↓ Skip to main content

Stem cell transplantation for ischemic stroke

Overview of attention for article published in Cochrane database of systematic reviews, May 2019
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (92nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
twitter
38 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Stem cell transplantation for ischemic stroke
Published in
Cochrane database of systematic reviews, May 2019
DOI 10.1002/14651858.cd007231.pub3
Pubmed ID
Authors

Giorgio Battista Boncoraglio, Michela Ranieri, Anna Bersano, Eugenio A Parati, Cinzia Del Giovane

Abstract

Stroke is a leading cause of morbidity and mortality worldwide, with very large healthcare and social costs, and a strong demand for alternative therapeutic approaches. Preclinical studies have shown that stem cells transplanted into the brain can lead to functional improvement. However, to date, evidence for the benefits of stem cell transplantation in people with ischemic stroke is lacking. This is the first update of the Cochrane review published in 2010. To assess the efficacy and safety of stem cell transplantation compared with control in people with ischemic stroke. We searched the Cochrane Stroke Group Trials Register (last searched August 2018), CENTRAL (last searched August 2018), MEDLINE (1966 to August 2018), Embase (1980 to August 2018), and BIOSIS (1926 to August 2018). We handsearched potentially relevant conference proceedings, screened reference lists, and searched ongoing trials and research registers (last searched August 2018). We also contacted individuals active in the field and stem cell manufacturers (last contacted August 2018). We included randomized controlled trials (RCTs) that recruited people with ischemic stroke, in any phase of the disease (acute, subacute or chronic), and an ischemic lesion confirmed by computerized tomography or magnetic resonance imaging scan. We included all types of stem cell transplantation, regardless of cell source (autograft, allograft, or xenograft; embryonic, fetal, or adult; from brain or other tissues), route of cell administration (systemic or local), and dosage. The primary outcome was efficacy (assessed as neurologic impairment or functional outcome) at longer term follow-up (minimum six months). Secondary outcomes included post-procedure safety outcomes (death, worsening of neurological deficit, infections, and neoplastic transformation). Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. If needed, we contacted study authors for additional information. We performed random effects meta-analyses when two or more RCTs were available for any outcome. We assessed the certainty of the evidence by using the GRADE approach. In this updated review, we included seven completed RCTs with 401 participants. All tested adult human non-neural stem cells; cells were transplanted during the acute, subacute, or chronic phase of ischemic stroke; administered intravenously, intra-arterially, intracerebrally, or into the lumbar subarachnoid space. Follow-up ranged from six months to seven years. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), or Barthel Index (BI). Safety outcomes included case fatality, and were measured at the end of the trial.Overall, stem cell transplantation was associated with a better clinical outcome when measured with the NIHSS (mean difference [MD] -1.49, 95% confidence interval [CI] -2.65 to -0.33; five studies, 319 participants; low-certainty evidence), but not with the mRS (MD -0.42, 95% CI -0.86 to 0.02; six studies, 371 participants; very low-certainty evidence), or the BI (MD 14.09, 95% CI -1.94 to 30.13; three studies, 170 participants; very low-certainty evidence). The studies in favor of stem cell transplantation had, on average, a higher risk of bias, and a sample size of 32 or fewer participants.No significant safety concerns associated with stem cell transplantation were raised with respect to death (risk ratio [RR] 0.66, 95% CI 0.39 to 1.14; six studies, participants; low-certainty evidence).We were not able to perform the sensitivity analysis according to the quality of studies, because all of them were at high risk of bias. Overall, in participants with ischemic stroke, stem cell transplantation was associated with a reduced neurological impairment, but not with a better functional outcome. No obvious safety concerns were raised. However, these conclusions came mostly from small RCTs with high risk of bias, and the certainty of the evidence ranged from low to very low. More well-designed trials are needed.

Twitter Demographics

The data shown below were collected from the profiles of 38 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Postgraduate 3 14%
Student > Bachelor 3 14%
Student > Master 2 9%
Student > Ph. D. Student 2 9%
Professor 1 5%
Other 5 23%
Unknown 6 27%
Readers by discipline Count As %
Medicine and Dentistry 9 41%
Nursing and Health Professions 3 14%
Agricultural and Biological Sciences 1 5%
Biochemistry, Genetics and Molecular Biology 1 5%
Engineering 1 5%
Other 0 0%
Unknown 7 32%

Attention Score in Context

This research output has an Altmetric Attention Score of 31. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 November 2019.
All research outputs
#591,087
of 14,308,102 outputs
Outputs from Cochrane database of systematic reviews
#1,725
of 10,947 outputs
Outputs of similar age
#19,671
of 262,327 outputs
Outputs of similar age from Cochrane database of systematic reviews
#13
of 24 outputs
Altmetric has tracked 14,308,102 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,947 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.7. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,327 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 92% of its contemporaries.
We're also able to compare this research output to 24 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.