↓ Skip to main content

A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies

Overview of attention for article published in BMC Bioinformatics, February 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (74th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
7 X users
wikipedia
1 Wikipedia page

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies
Published in
BMC Bioinformatics, February 2016
DOI 10.1186/s12859-016-0937-5
Pubmed ID
Authors

Anjana Grandhi, Wenge Guo, Shyamal D. Peddada

Abstract

Often researchers are interested in comparing multiple experimental groups (e.g. tumor size) with a reference group (e.g. normal tissue) on the basis of thousands of features (e.g. genes) and determine if a differentially expressed feature is up or down regulated in a pairwise comparison. There are two sources of false discoveries, one due to multiple testing involving several pairwise comparisons and the second due to falsely declaring a feature to be up (or down) regulated when it is not (known as directional error). Together, the total error rate is called the mixed directional false discovery rate (mdFDR). We develop a general powerful mdFDR controlling testing procedure and illustrate the methodology by analyzing uterine fibroid gene expression data (PLoS ONE 8:63909, 2013). We identify several differentially expressed genes (DEGs) and pathways that are specifically enriched according to the size of a uterine fibroid. The proposed general procedure strongly controls mdFDR. Several specific methodologies can be derived from this general methodology by using appropriate testing procedures at different steps of the general procedure. Thus we are providing a general framework for making multiple pairwise comparisons. Our analysis of the uterine fibroid growth gene expression data suggests that molecular characteristics of a fibroid changes with size. Our powerful methodology allowed us to draw several interesting conclusions regarding the molecular characteristics of uterine fibroids. For example, IL-1 signaling pathway (Sci STKE 2003:3, 2003), associated with inflammation and known to activate prostaglandins that are implicated in the progression of fibroids, is significantly enriched only in small tumors (volume < 5.7 cm (3)). It appears that the molecular apparatus necessary for fibroid growth and development is established during tumor development. A complete list of all DEGs and the corresponding enriched pathways according to tumor size is provided for researchers to mine these data. Identification of these DEGs and the pathways may potentially have clinical implications.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 1 3%
Unknown 36 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 24%
Student > Ph. D. Student 6 16%
Student > Postgraduate 3 8%
Student > Master 3 8%
Student > Bachelor 2 5%
Other 8 22%
Unknown 6 16%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 35%
Biochemistry, Genetics and Molecular Biology 4 11%
Computer Science 2 5%
Medicine and Dentistry 2 5%
Business, Management and Accounting 1 3%
Other 6 16%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 April 2019.
All research outputs
#5,462,121
of 22,851,489 outputs
Outputs from BMC Bioinformatics
#1,953
of 7,292 outputs
Outputs of similar age
#75,949
of 298,590 outputs
Outputs of similar age from BMC Bioinformatics
#44
of 144 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. Compared to these this one has done well and is in the 76th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 7,292 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,590 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 144 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.