↓ Skip to main content

Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis

Overview of attention for article published in BMC Genomics, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
94 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis
Published in
BMC Genomics, February 2016
DOI 10.1186/s12864-016-2472-1
Pubmed ID
Authors

Jordane Despres, Evelyne Forano, Pascale Lepercq, Sophie Comtet-Marre, Grégory Jubelin, Carl J. Yeoman, Margret E. Berg Miller, Christopher J. Fields, Nicolas Terrapon, Carine Le Bourvellec, Catherine M.G.C. Renard, Bernard Henrissat, Bryan A. White, Pascale Mosoni

Abstract

Diet and particularly dietary fibres have an impact on the gut microbiome and play an important role in human health and disease. Pectin is a highly consumed dietary fibre found in fruits and vegetables and is also a widely used additive in the food industry. Yet there is no information on the effect of pectin on the human gut microbiome. Likewise, little is known on gut pectinolytic bacteria and their enzyme systems. This study was undertaken to investigate the mechanisms of pectin degradation by the prominent human gut symbiont Bacteroides xylanisolvens. Transcriptomic analyses of B. xylanisolvens XB1A grown on citrus and apple pectins at mid- and late-log phases highlighted six polysaccharide utilization loci (PUL) that were overexpressed on pectin relative to glucose. The PUL numbers used in this report are those given by Terrapon et al. (Bioinformatics 31(5):647-55, 2015) and found in the PUL database: http://www.cazy.org/PULDB/ . Based on their CAZyme composition, we propose that PUL 49 and 50, the most overexpressed PULs on both pectins and at both growth phases, are involved in homogalacturonan (HG) and type I rhamnogalacturonan (RGI) degradation, respectively. PUL 13 and PUL 2 could be involved in the degradation of arabinose-containing side chains and of type II rhamnogalacturonan (RGII), respectively. Considering that HG is the most abundant moiety (>70 %) within pectin, the importance of PUL 49 was further investigated by insertion mutagenesis into the susC-like gene. The insertion blocked transcription of the susC-like and the two downstream genes (susD-like/FnIII). The mutant showed strong growth reduction, thus confirming that PUL 49 plays a major role in pectin degradation. This study shows the existence of six PULs devoted to pectin degradation by B. xylanisolvens, one of them being particularly important in this function. Hence, this species deploys a very complex enzymatic machinery that probably reflects the structural complexity of pectin. Our findings also highlight the metabolic plasticity of B. xylanisolvens towards dietary fibres that contributes to its competitive fitness within the human gut ecosystem. Wider functional and ecological studies are needed to understand how dietary fibers and especially plant cell wall polysaccharides drive the composition and metabolism of the fibrolytic and non-fibrolytic community within the gut microbial ecosystem.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 94 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
Estonia 1 1%
Denmark 1 1%
Unknown 90 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 28%
Researcher 21 22%
Student > Master 7 7%
Student > Bachelor 6 6%
Student > Doctoral Student 6 6%
Other 10 11%
Unknown 18 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 24 26%
Biochemistry, Genetics and Molecular Biology 21 22%
Immunology and Microbiology 12 13%
Chemistry 3 3%
Medicine and Dentistry 3 3%
Other 8 9%
Unknown 23 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 March 2016.
All research outputs
#6,969,309
of 22,852,911 outputs
Outputs from BMC Genomics
#3,221
of 10,658 outputs
Outputs of similar age
#96,629
of 297,542 outputs
Outputs of similar age from BMC Genomics
#72
of 222 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 10,658 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,542 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 222 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.