↓ Skip to main content

Diverse roles of endoplasmic reticulum stress sensors in bacterial infection

Overview of attention for article published in Molecular and Cellular Pediatrics, February 2016
Altmetric Badge

Mentioned by

facebook
1 Facebook page

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diverse roles of endoplasmic reticulum stress sensors in bacterial infection
Published in
Molecular and Cellular Pediatrics, February 2016
DOI 10.1186/s40348-016-0037-7
Pubmed ID
Authors

Helena Pillich, Maria Loose, Klaus-Peter Zimmer, Trinad Chakraborty

Abstract

Bacterial infection often leads to cellular damage, primarily marked by loss of cellular integrity and cell death. However, in recent years, it is being increasingly recognized that, in individual cells, there are graded responses collectively termed cell-autonomous defense mechanisms that induce cellular processes designed to limit cell damage, enable repair, and eliminate bacteria. Many of these responses are triggered not by detection of a particular bacterial effector or ligand but rather by their effects on key cellular processes and changes in homeostasis induced by microbial effectors when recognized. These in turn lead to a decrease in essential cellular functions such as protein translation or mitochondrial respiration and the induction of innate immune responses that may be specific to the cellular deficit induced. These processes are often associated with specific cell compartments, e.g., the endoplasmic reticulum (ER). Under non-infection conditions, these systems are generally involved in sensing cellular stress and in inducing and orchestrating the subsequent cellular response. Thus, perturbations of ER homeostasis result in accumulation of unfolded proteins which are detected by ER stress sensors in order to restore the normal condition. The ER is also important during bacterial infection, and bacterial effectors that activate the ER stress sensors have been discovered. Increasing evidence now indicate that bacteria have evolved strategies to differentially activate different arms of ER stress sensors resulting in specific host cell response. In this review, we will describe the mechanisms used by bacteria to activate the ER stress sensors and discuss their role during infection.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 30%
Researcher 10 22%
Student > Master 5 11%
Student > Doctoral Student 4 9%
Student > Bachelor 3 7%
Other 3 7%
Unknown 7 15%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 35%
Immunology and Microbiology 9 20%
Agricultural and Biological Sciences 7 15%
Chemistry 4 9%
Medicine and Dentistry 4 9%
Other 1 2%
Unknown 5 11%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 February 2016.
All research outputs
#20,311,744
of 22,852,911 outputs
Outputs from Molecular and Cellular Pediatrics
#82
of 98 outputs
Outputs of similar age
#251,411
of 297,540 outputs
Outputs of similar age from Molecular and Cellular Pediatrics
#10
of 11 outputs
Altmetric has tracked 22,852,911 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 98 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 297,540 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 11 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.