↓ Skip to main content

Microbial Environmental Genomics (MEG)

Overview of attention for book
Cover of 'Microbial Environmental Genomics (MEG)'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 "Deciphering Archaeal Communities" Omics Tools in the Study of Archaeal Communities.
  3. Altmetric Badge
    Chapter 2 Investigating the Endobacteria Which Thrive in Arbuscular Mycorrhizal Fungi
  4. Altmetric Badge
    Chapter 3 GenoSol Platform: A Logistic and Technical Platform for Conserving and Exploring Soil Microbial Diversity.
  5. Altmetric Badge
    Chapter 4 Sample Preparation for Fungal Community Analysis by High-Throughput Sequencing of Barcode Amplicons
  6. Altmetric Badge
    Chapter 5 Fungal Communities in Soils: Soil Organic Matter Degradation.
  7. Altmetric Badge
    Chapter 6 DNA-Based Characterization and Identification of Arbuscular Mycorrhizal Fungi Species.
  8. Altmetric Badge
    Chapter 7 Molecular Identification of Soil Eukaryotes and Focused Approaches Targeting Protist and Faunal Groups Using High-Throughput Metabarcoding.
  9. Altmetric Badge
    Chapter 8 Identification and In Situ Distribution of a Fungal Gene Marker: The Mating Type Genes of the Black Truffle
  10. Altmetric Badge
    Chapter 9 Stable-Isotope Probing RNA to Study Plant/Fungus Interactions
  11. Altmetric Badge
    Chapter 10 Targeted Gene Capture by Hybridization to Illuminate Ecosystem Functioning.
  12. Altmetric Badge
    Chapter 11 Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.
  13. Altmetric Badge
    Chapter 12 Reconstruction of Transformation Processes Catalyzed by the Soil Microbiome Using Metagenomic Approaches.
  14. Altmetric Badge
    Chapter 13 MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.
  15. Altmetric Badge
    Chapter 14 Analysis of Active Methylotrophic Communities: When DNA-SIP Meets High-Throughput Technologies.
  16. Altmetric Badge
    Chapter 15 Functional Metagenomics: Construction and High-Throughput Screening of Fosmid Libraries for Discovery of Novel Carbohydrate-Active Enzymes.
  17. Altmetric Badge
    Chapter 16 Metatranscriptomics of Soil Eukaryotic Communities
  18. Altmetric Badge
    Chapter 17 Analysis of Ancient DNA in Microbial Ecology.
Attention for Chapter 12: Reconstruction of Transformation Processes Catalyzed by the Soil Microbiome Using Metagenomic Approaches.
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (62nd percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
7 tweeters

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Reconstruction of Transformation Processes Catalyzed by the Soil Microbiome Using Metagenomic Approaches.
Chapter number 12
Book title
Microbial Environmental Genomics (MEG)
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3369-3_12
Pubmed ID
Book ISBNs
978-1-4939-3367-9, 978-1-4939-3369-3
Authors

Schöler, Anne, de Vries, Maria, Vestergaard, Gisle, Schloter, Michael, Anne Schöler, Maria de Vries, Gisle Vestergaard, Michael Schloter

Editors

Francis Martin, Stephane Uroz

Abstract

Microorganisms are central players in the turnover of nutrients in soil and drive the decomposition of complex organic materials into simpler forms that can be utilized by other biota. Therefore microbes strongly drive soil quality and ecosystem services provided by soils, including plant yield and quality. Thus it is one of the major goals of soil sciences to describe the most relevant enzymes that are involved in nutrient mobilization and to understand the regulation of gene expression of the corresponding genes. This task is however impeded by the enormous microbial diversity in soils. Indeed, we are far to appreciate the number of species present in 1 g of soil, as well as the major functional traits they carry. Here, also most next-generation sequencing (NGS) approaches fail as immense sequencing efforts are needed to fully uncover the functional diversity of soils. Thus even if a gene of interest can be identified by BLAST similarity analysis, the obtained number of reads by NGS is too low for a quantitative assessment of the gene or for a description of its taxonomic diversity. Here we present an integrated approach, which we termed the second-generation full cycle approach, to quantify the abundance and diversity of key enzymes involved in nutrient mobilization. This approach involves the functional annotation of metagenomic data with a relative low coverage (5 Gbases or less) and the design of highly targeted primer systems to assess the abundance or diversity of enzyme-coding genes that are drivers for a particular transformation step in nutrient turnover.

Twitter Demographics

The data shown below were collected from the profiles of 7 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Brazil 2 9%
France 1 4%
Unknown 20 87%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 22%
Student > Master 5 22%
Student > Bachelor 2 9%
Professor > Associate Professor 2 9%
Student > Doctoral Student 2 9%
Other 4 17%
Unknown 3 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 30%
Agricultural and Biological Sciences 6 26%
Earth and Planetary Sciences 2 9%
Immunology and Microbiology 2 9%
Environmental Science 1 4%
Other 1 4%
Unknown 4 17%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2016.
All research outputs
#4,431,915
of 9,740,557 outputs
Outputs from Methods in molecular biology
#1,595
of 7,457 outputs
Outputs of similar age
#125,829
of 341,117 outputs
Outputs of similar age from Methods in molecular biology
#195
of 1,165 outputs
Altmetric has tracked 9,740,557 research outputs across all sources so far. This one has received more attention than most of these and is in the 53rd percentile.
So far Altmetric has tracked 7,457 research outputs from this source. They receive a mean Attention Score of 2.0. This one has done well, scoring higher than 78% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,117 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 62% of its contemporaries.
We're also able to compare this research output to 1,165 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.