↓ Skip to main content

Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles

Overview of attention for article published in Cell & Bioscience, March 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (57th percentile)

Mentioned by

twitter
2 X users
facebook
1 Facebook page

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
29 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cold temperature blocks thyroid hormone-induced changes in lipid and energy metabolism in the liver of Lithobates catesbeianus tadpoles
Published in
Cell & Bioscience, March 2016
DOI 10.1186/s13578-016-0087-5
Pubmed ID
Authors

Shunsuke Suzuki, Koichiro Awai, Akinori Ishihara, Kiyoshi Yamauchi

Abstract

Exposure of the American bullfrog Lithobates catesbeianus tadpoles to low temperature affects many biological processes including lipid metabolism and the thyroid hormone (TH) signaling pathway, resulting in arrest of TH-induced metamorphosis. To clarify what molecular events occur in this phenomenon, we investigated the glycerophospholipid and fatty acid (FA) compositions, the activities of mitochondrial enzymes and the transcript levels of related genes in the liver of control (26 °C) and cold-treated (4 °C) tadpoles with or without 5 nM 3,3',5-triiodothyronine (T3). Exposure to T3 decreased the tail height and polyunsaturation of FAs in the glycerophospholipids, and increased plasma glucose levels and transcript levels of primary TH-response genes including TH receptor, and some energy metabolic (cox4, srebp1 and fas) and FA chain elongase genes (elovl3 and elovl5). However, these T3-induced responses were abolished at 4 °C. Exposure to cold temperature enhanced plasma glucose, triglyceride and free FA levels, monounsaturation of FAs, mitochondrial enzymes activities (cytochrome c oxidase and carnitine palmitoyltransferase; U/g liver), with the upregulation of the genes involved in glycogenolysis (pygl), gluconeogenesis (pck1 and g6pc2), FA β-oxidation (acadl), and cholesterol uptake and synthesis (hmgcr, srebp2 and ldlr1), glycerophospholipids synthesis (pcyt1, pcyt2, pemt, and pparg), and FA monounsaturation (scd1) and chain elongation (elovl1 and elovl2). T3 had little effect on the cold-induced changes. Our study demonstrated that exposures to T3 and cold temperature exert different effects on lipid metabolism, resulting in changes in the FA composition in glycerophospholipids, and suggests that a cold-induced signal may block TH-signaling pathway around primary TH-response genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 29 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 29 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 34%
Student > Bachelor 4 14%
Student > Master 3 10%
Researcher 2 7%
Lecturer 1 3%
Other 5 17%
Unknown 4 14%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 24%
Biochemistry, Genetics and Molecular Biology 6 21%
Environmental Science 2 7%
Nursing and Health Professions 1 3%
Unspecified 1 3%
Other 5 17%
Unknown 7 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 May 2016.
All research outputs
#13,972,009
of 22,856,968 outputs
Outputs from Cell & Bioscience
#273
of 933 outputs
Outputs of similar age
#153,132
of 299,392 outputs
Outputs of similar age from Cell & Bioscience
#7
of 19 outputs
Altmetric has tracked 22,856,968 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 933 research outputs from this source. They receive a mean Attention Score of 3.5. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,392 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 19 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.