↓ Skip to main content

Calbindin-D-28K like immunoreactivity in superficial dorsal horn neurons and effects of sciatic chronic constriction injury

Overview of attention for article published in Neuroscience, June 2016
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
10 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Calbindin-D-28K like immunoreactivity in superficial dorsal horn neurons and effects of sciatic chronic constriction injury
Published in
Neuroscience, June 2016
DOI 10.1016/j.neuroscience.2016.03.016
Pubmed ID
Authors

M.J. Stebbing, S. Balasubramanyan, P.A. Smith

Abstract

The neuropathic pain that results from peripheral nerve injury is associated with alterations in the properties of neurons in the superficial spinal laminae. Chronic constriction injury (CCI) of the rat sciatic nerve increases excitatory synaptic drive to excitatory neurons in the substantia gelatinosa whilst limiting that to inhibitory neurons. Since the calcium binding protein calbindin D-28K has been associated with excitatory neurons, we examined whether CCI altered the properties of neurons expressing calbindin-like immunoreactivity (Cal+). These account for 30% of the neurons in lamina I and II. Calbindin did not co-localize with any particular electrophysiological phenotype of neuron; in substantia gelatinosa, it was found in some tonic, delay, irregular, phasic and transient firing neurons and in some cells that displayed central, radial or vertical morphology. When neuronal phenotype was defined more precisely in terms of both morphology and electrophysiological properties, no strong correlation with calbindin expression was found. The frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSC) in calbindin negative (Cal-) neurons was greater than that in Cal+ neurons. CCI did not alter the proportion of Cal+ neurons in the dorsal horn. Although CCI promoted a 4-fold increase in sEPSC frequency in Cal+ neurons, sEPSC amplitude was reduced by 22% and charge transfer per second was unchanged. Since synaptic drive to Cal+ neurons is weak and there is no firm correlation between neuronal phenotype and calbindin expression, it is doubtful whether these neurons play a major role in the generation of central sensitization.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 10 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 10 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 30%
Student > Ph. D. Student 2 20%
Student > Master 2 20%
Unspecified 1 10%
Professor > Associate Professor 1 10%
Other 1 10%
Readers by discipline Count As %
Neuroscience 4 40%
Agricultural and Biological Sciences 3 30%
Unspecified 1 10%
Nursing and Health Professions 1 10%
Medicine and Dentistry 1 10%
Other 0 0%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 March 2016.
All research outputs
#10,891,982
of 12,290,236 outputs
Outputs from Neuroscience
#4,863
of 5,518 outputs
Outputs of similar age
#237,024
of 282,004 outputs
Outputs of similar age from Neuroscience
#70
of 108 outputs
Altmetric has tracked 12,290,236 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,518 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,004 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 108 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.