↓ Skip to main content

Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens

Overview of attention for article published in The ISME Journal, March 2012
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

blogs
4 blogs
twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
117 Dimensions

Readers on

mendeley
262 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens
Published in
The ISME Journal, March 2012
DOI 10.1038/ismej.2012.10
Pubmed ID
Authors

Frank O Aylward, Kristin E Burnum, Jarrod J Scott, Garret Suen, Susannah G Tringe, Sandra M Adams, Kerrie W Barry, Carrie D Nicora, Paul D Piehowski, Samuel O Purvine, Gabriel J Starrett, Lynne A Goodwin, Richard D Smith, Mary S Lipton, Cameron R Currie

Abstract

Herbivores gain access to nutrients stored in plant biomass largely by harnessing the metabolic activities of microbes. Leaf-cutter ants of the genus Atta are a hallmark example; these dominant neotropical herbivores cultivate symbiotic fungus gardens on large quantities of fresh plant forage. As the external digestive system of the ants, fungus gardens facilitate the production and sustenance of millions of workers. Using metagenomic and metaproteomic techniques, we characterize the bacterial diversity and physiological potential of fungus gardens from two species of Atta. Our analysis of over 1.2 Gbp of community metagenomic sequence and three 16S pyrotag libraries reveals that in addition to harboring the dominant fungal crop, these ecosystems contain abundant populations of Enterobacteriaceae, including the genera Enterobacter, Pantoea, Klebsiella, Citrobacter and Escherichia. We show that these bacterial communities possess genes associated with lignocellulose degradation and diverse biosynthetic pathways, suggesting that they play a role in nutrient cycling by converting the nitrogen-poor forage of the ants into B-vitamins, amino acids and other cellular components. Our metaproteomic analysis confirms that bacterial glycosyl hydrolases and proteins with putative biosynthetic functions are produced in both field-collected and laboratory-reared colonies. These results are consistent with the hypothesis that fungus gardens are specialized fungus-bacteria communities that convert plant material into energy for their ant hosts. Together with recent investigations into the microbial symbionts of vertebrates, our work underscores the importance of microbial communities in the ecology and evolution of herbivorous metazoans.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 262 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 6 2%
Germany 2 <1%
Denmark 2 <1%
Brazil 2 <1%
Russia 2 <1%
Austria 1 <1%
France 1 <1%
Canada 1 <1%
Switzerland 1 <1%
Other 2 <1%
Unknown 242 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 63 24%
Researcher 50 19%
Student > Master 32 12%
Student > Bachelor 27 10%
Student > Doctoral Student 13 5%
Other 44 17%
Unknown 33 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 142 54%
Biochemistry, Genetics and Molecular Biology 33 13%
Environmental Science 16 6%
Immunology and Microbiology 10 4%
Chemistry 4 2%
Other 15 6%
Unknown 42 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 28. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 December 2020.
All research outputs
#1,393,775
of 25,457,858 outputs
Outputs from The ISME Journal
#652
of 3,274 outputs
Outputs of similar age
#7,100
of 168,355 outputs
Outputs of similar age from The ISME Journal
#5
of 31 outputs
Altmetric has tracked 25,457,858 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 94th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,274 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.9. This one has done well, scoring higher than 80% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 168,355 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.