↓ Skip to main content

Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate

Overview of attention for article published in BMC Biology, March 2016
Altmetric Badge

Mentioned by

twitter
7 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate
Published in
BMC Biology, March 2016
DOI 10.1186/s12915-016-0245-6
Pubmed ID
Authors

Erez Nitzan, Oshri Avraham, Nitza Kahane, Shai Ofek, Deepak Kumar, Chaya Kalcheim

Abstract

The dorsal midline region of the neural tube that results from closure of the neural folds is generally termed the roof plate (RP). However, this domain is highly dynamic and complex, and is first transiently inhabited by prospective neural crest (NC) cells that sequentially emigrate from the neuroepithelium. It only later becomes the definitive RP, the dorsal midline cells of the spinal cord. We previously showed that at the trunk level of the axis, prospective RP progenitors originate ventral to the premigratory NC and progressively reach the dorsal midline following NC emigration. However, the molecular mechanisms underlying the end of NC production and formation of the definitive RP remain virtually unknown. Based on distinctive cellular and molecular traits, we have defined an initial NC and a subsequent RP stage, allowing us to investigate the mechanisms responsible for the transition between the two phases. We demonstrate that in spite of the constant production of BMP4 in the dorsal tube at both stages, RP progenitors only transiently respond to the ligand and lose competence shortly before they arrive at their final location. In addition, exposure of dorsal tube cells at the NC stage to high levels of BMP signaling induces premature RP traits, such as Hes1/Hairy1, while concomitantly inhibiting NC production. Reciprocally, early inhibition of BMP signaling prevents Hairy1 mRNA expression at the RP stage altogether, suggesting that BMP is both necessary and sufficient for the development of this RP-specific trait. Furthermore, when Hes1/Hairy1 is misexpressed at the NC stage, it inhibits BMP signaling and downregulates BMPR1A/Alk3 mRNA expression, transcription of BMP targets such as Foxd3, cell-cycle progression, and NC emigration. Reciprocally, Foxd3 inhibits Hairy1, suggesting that repressive cross-interactions at the level of, and downstream from, BMP ensure the temporal separation between both lineages. Together, our data suggest that BMP signaling is important both for NC and RP formation. Given that these two structures develop sequentially, we speculate that the longer exposure of RP progenitors to BMP compared with that of premigratory NC cells may be translated into a higher signaling level in the former. This induces changes in responsiveness to BMP, most likely by downregulating the expression of Alk3 receptors and, consequently, of BMP-dependent downstream transcription factors, which exhibit spatial complementary expression patterns and mutually repress each other to generate alternative fates. This molecular dynamic is likely to account for the transition between the NC and definitive RP stages and thus be responsible for the segregation between central and peripheral lineages during neural development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 22%
Researcher 8 17%
Student > Bachelor 7 15%
Student > Master 4 9%
Professor > Associate Professor 3 7%
Other 4 9%
Unknown 10 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 30%
Agricultural and Biological Sciences 13 28%
Neuroscience 3 7%
Medicine and Dentistry 2 4%
Energy 1 2%
Other 1 2%
Unknown 12 26%