↓ Skip to main content

Hydrogen sulfide modulates chromatin remodeling and inflammatory mediator production in response to endotoxin, but does not play a role in the development of endotoxin tolerance

Overview of attention for article published in Journal of Inflammation, April 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Hydrogen sulfide modulates chromatin remodeling and inflammatory mediator production in response to endotoxin, but does not play a role in the development of endotoxin tolerance
Published in
Journal of Inflammation, April 2016
DOI 10.1186/s12950-016-0119-2
Pubmed ID
Authors

Ester C. S. Rios, Francisco G. Soriano, Gabor Olah, Domokos Gerö, Bartosz Szczesny, Csaba Szabo

Abstract

Pretreatment with low doses of LPS (lipopolysaccharide, bacterial endotoxin) reduces the pro-inflammatory response to a subsequent higher LPS dose, a phenomenon known as endotoxin tolerance. Moreover, hydrogen sulfide (H2S), an endogenous gaseous mediator (gasotransmitter) can exert anti-inflammatory effects. Here we investigated the potential role of H2S in the development of LPS tolerance. THP1 differentiated macrophages were pretreated with the H2S donor NaHS (1 mM) or the H2S biosynthesis inhibitor aminooxyacetic acid (AOAA, 1 mM). To induce tolerance, cells were treated with a low concentration of LPS (0.5 μg/ml) for 4 or 24 h, and then treated with a high concentration of LPS (1 μg/ml) for 4 h or 24 h. In in vivo studies, male wild-type and CSE(-/-) mice were randomized to the following groups: Control (vehicle); Endotoxemic saline for 3 days before the induction of endotoxemia with 10 mg/kg LPS) mg/kg; Tolerant (LPS at 1 mg/kg for 3 days, followed LPS at 10 mg/kg). Animals were sacrificed after 4 or 12 h; plasma IL-6 and TNF-α levels were measured. Changes in histone H3 and H4 acetylation were analyzed by Western blotting. LPS tolerance decreased pro-inflammatory cytokine production. AOAA did not affect the effect of tolerance on reducing cytokine production. Treatment of the cells with the H2S donor reduced cytokine production. Induction of the tolerance increased the acetylation of H3; AOAA reduced histone acetylation. H2S donation increased histone acetylation. Tolerance did not affect the responses to H2S with respect to histone acetylation. In conclusion, both LPS tolerance and H2S donation decrease LPS-induced cytokine production in vitro and modulate histone acetylation. However, endogenous, CSE-derived H2S does not appear to play a significant role in the development of LPS tolerance.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 18%
Student > Ph. D. Student 3 14%
Student > Bachelor 2 9%
Professor 2 9%
Lecturer 1 5%
Other 4 18%
Unknown 6 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 23%
Medicine and Dentistry 3 14%
Biochemistry, Genetics and Molecular Biology 2 9%
Chemistry 2 9%
Neuroscience 2 9%
Other 1 5%
Unknown 7 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2016.
All research outputs
#20,656,161
of 25,374,647 outputs
Outputs from Journal of Inflammation
#278
of 425 outputs
Outputs of similar age
#234,497
of 314,725 outputs
Outputs of similar age from Journal of Inflammation
#7
of 9 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 425 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,725 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.