↓ Skip to main content

Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria

Overview of attention for article published in Journal of Nanobiotechnology, April 2016
Altmetric Badge

Citations

dimensions_citation
41 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Short peptide based nanotubes capable of effective curcumin delivery for treating drug resistant malaria
Published in
Journal of Nanobiotechnology, April 2016
DOI 10.1186/s12951-016-0179-8
Pubmed ID
Authors

Shadab Alam, Jiban Jyoti Panda, Tapan Kumar Mukherjee, Virander Singh Chauhan

Abstract

Curcumin (Ccm) has shown immense potential as an antimalarial agent; however its low solubility and less bioavailability attenuate the in vivo efficacy of this potent compound. In order to increase Ccm's bioavailability, a number of organic/inorganic polymer based nanoparticles have been investigated. However, most of the present day nano based delivery systems pose a conundrum with respect to their complex synthesis procedures, poor in vivo stability and toxicity issues. Peptides due to their high biocompatibility could act as excellent materials for the synthesis of nanoparticulate drug delivery systems. Here, we have investigated dehydrophenylalanine (ΔPhe) di-peptide based self-assembled nanoparticles for the efficient delivery of Ccm as an antimalarial agent. The self-assembly and curcumin loading capacity of different ΔPhe dipeptides, phenylalanine-α,β-dehydrophenylalanine (FΔF), arginine-α,β-dehydrophenylalanine (RΔF), valine-α,β-dehydrophenylalanine (VΔF) and methonine-α,β-dehydrophenylalanine (MΔF) were investigated for achieving enhanced and effective delivery of the compound for potential anti-malarial therapy. FΔF, RΔF, VΔF and MΔF peptides formed different types of nanoparticles like nanotubes and nanovesicles under similar assembling conditions. Out of these, F∆F nanotubes showed maximum curcumin loading capacity of almost 68 % W/W. Ccm loaded F∆F nanotubes (Ccm-F∆F) showed comparatively higher (IC50, 3.0 µM) inhibition of Plasmodium falciparum (Indo strain) as compared to free Ccm (IC50, 13 µM). Ccm-F∆F nano formulation further demonstrated higher inhibition of parasite growth in malaria infected mice as compared to free Ccm. The dipeptide nanoparticles were highly biocompatible and didn't show any toxic effect on mammalian cell lines and normal blood cells. This work provides a proof of principle of using highly biocompatible short peptide based nanoparticles for entrapment and in vivo delivery of Ccm leading to an enhancement in its efficacy as an antimalarial agent.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 87 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 22 25%
Student > Master 18 21%
Researcher 9 10%
Other 6 7%
Student > Bachelor 5 6%
Other 11 13%
Unknown 16 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 17 20%
Pharmacology, Toxicology and Pharmaceutical Science 12 14%
Chemistry 8 9%
Medicine and Dentistry 7 8%
Agricultural and Biological Sciences 6 7%
Other 13 15%
Unknown 24 28%