↓ Skip to main content

Differential kinetic profiles and metabolism of primaquine enantiomers by human hepatocytes

Overview of attention for article published in Malaria Journal, April 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (55th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (56th percentile)

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential kinetic profiles and metabolism of primaquine enantiomers by human hepatocytes
Published in
Malaria Journal, April 2016
DOI 10.1186/s12936-016-1270-1
Pubmed ID
Authors

Pius S. Fasinu, Bharathi Avula, Babu L. Tekwani, N. P. Dhammika Nanayakkara, Yan-Hong Wang, H. M. T. Bandara Herath, James D. McChesney, Gregory A. Reichard, Sean R. Marcsisin, Mahmoud A. Elsohly, Shabana I. Khan, Ikhlas A. Khan, Larry A. Walker

Abstract

The clinical utility of primaquine (PQ), used as a racemic mixture of two enantiomers, is limited due to metabolism-linked hemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. The current study investigated differential metabolism of PQ enantiomers in light of the suggestions that toxicity and efficacy might be largely enantioselective. Stable isotope (13)C-labelled primaquine and its two enantiomers (+)-PQ, (-)-PQ were separately incubated with cryopreserved human hepatocytes. Time-tracked substrate depletion and metabolite production were monitored via UHPLC-MS/MS. The initial half-life of 217 and 65 min; elimination rate constants (λ) of 0.19 and 0.64 h(-1); intrinsic clearance (Clint) of 2.55 and 8.49 (µL/min)/million cells, which when up-scaled yielded Clint of 6.49 and 21.6 (mL/min)/kg body mass was obtained respectively for (+)- and (-)-PQ. The extrapolation of in vitro intrinsic clearance to in vivo human hepatic blood clearance, performed using the well-stirred liver model, showed that the rate of hepatic clearance of (+)-PQ was only 45 % that of (-)-PQ. Two major primary routes of metabolism were observed-oxidative deamination of the terminal amine and hydroxylations on the quinoline moiety of PQ. The major deaminated metabolite, carboxyprimaquine (CPQ) was preferentially generated from the (-)-PQ. Other deaminated metabolites including PQ terminal alcohol (m/z 261), a cyclized side chain derivative from the aldehyde (m/z 241), cyclized carboxylic acid derivative (m/z 257), a quinone-imine product of hydroxylated CPQ (m/z 289), CPQ glucuronide (m/z 451) and the glucuronide of PQ alcohol (m/z 437) were all preferentially generated from the (-)-PQ. The major quinoline oxidation product (m/z 274) was preferentially generated from (+)-PQ. In addition to the products of the two metabolic pathways, two other major metabolites were observed: a prominent glycosylated conjugate of PQ on the terminal amine (m/z 422), peaking by 30 min and preferentially generated by (+)-PQ; and the carbamoyl glucuronide of PQ (m/z 480) exclusively generated from (+)-PQ. Metabolism of PQ showed enantioselectivity. These findings may provide important information in establishing clinical differences in PQ enantiomers.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 24%
Researcher 4 16%
Student > Master 4 16%
Professor > Associate Professor 2 8%
Student > Bachelor 1 4%
Other 3 12%
Unknown 5 20%
Readers by discipline Count As %
Medicine and Dentistry 5 20%
Chemistry 4 16%
Pharmacology, Toxicology and Pharmaceutical Science 3 12%
Biochemistry, Genetics and Molecular Biology 2 8%
Nursing and Health Professions 1 4%
Other 4 16%
Unknown 6 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 October 2016.
All research outputs
#7,661,332
of 23,322,966 outputs
Outputs from Malaria Journal
#2,503
of 5,657 outputs
Outputs of similar age
#108,269
of 300,384 outputs
Outputs of similar age from Malaria Journal
#70
of 165 outputs
Altmetric has tracked 23,322,966 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,657 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 300,384 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 56% of its contemporaries.