↓ Skip to main content

Vaccine Design

Overview of attention for book
Cover of 'Vaccine Design'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Clinical Impact of Vaccine Development.
  3. Altmetric Badge
    Chapter 2 Vaccine Design
  4. Altmetric Badge
    Chapter 3 Vaccine Design
  5. Altmetric Badge
    Chapter 4 Reverse Vaccinology: The Pathway from Genomes and Epitope Predictions to Tailored Recombinant Vaccines.
  6. Altmetric Badge
    Chapter 5 Vaccine Design
  7. Altmetric Badge
    Chapter 6 Vaccine Design
  8. Altmetric Badge
    Chapter 7 Development of Rabies Virus-Like Particles for Vaccine Applications: Production, Characterization, and Protection Studies.
  9. Altmetric Badge
    Chapter 8 Analytic Vaccinology: Antibody-Driven Design of a Human Cytomegalovirus Subunit Vaccine.
  10. Altmetric Badge
    Chapter 9 Generation of a Single-Cycle Replicable Rift Valley Fever Vaccine.
  11. Altmetric Badge
    Chapter 10 Application of Droplet Digital PCR to Validate Rift Valley Fever Vaccines.
  12. Altmetric Badge
    Chapter 11 Methods to Evaluate Novel Hepatitis C Virus Vaccines.
  13. Altmetric Badge
    Chapter 12 Designing Efficacious Vesicular Stomatitis Virus-Vectored Vaccines Against Ebola Virus.
  14. Altmetric Badge
    Chapter 13 Assessment of Functional Norovirus Antibody Responses by Blocking Assay in Mice.
  15. Altmetric Badge
    Chapter 14 Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.
  16. Altmetric Badge
    Chapter 15 Generation and Characterization of a Chimeric Tick-Borne Encephalitis Virus Attenuated Strain ChinTBEV.
  17. Altmetric Badge
    Chapter 16 Vaccine Design
  18. Altmetric Badge
    Chapter 17 Reverse Genetics Approaches to Control Arenavirus.
  19. Altmetric Badge
    Chapter 18 DNA Vaccines: A Strategy for Developing Novel Multivalent TB Vaccines.
  20. Altmetric Badge
    Chapter 19 Vaccine Design
  21. Altmetric Badge
    Chapter 20 Vaccine Design
  22. Altmetric Badge
    Chapter 21 Vaccine Design
  23. Altmetric Badge
    Chapter 22 Murine Models of Bacteremia and Surgical Wound Infection for the Evaluation of Staphylococcus aureus Vaccine Candidates.
  24. Altmetric Badge
    Chapter 23 Vaccine Design
  25. Altmetric Badge
    Chapter 24 An Approach to Identify and Characterize a Subunit Candidate Shigella Vaccine Antigen.
  26. Altmetric Badge
    Chapter 25 Approach to the Discovery, Development, and Evaluation of a Novel Neisseria meningitidis Serogroup B Vaccine.
  27. Altmetric Badge
    Chapter 26 Vaccine Design
  28. Altmetric Badge
    Chapter 27 Assessment of Live Plague Vaccine Candidates.
  29. Altmetric Badge
    Chapter 28 Vaccine Design
  30. Altmetric Badge
    Chapter 29 Vaccine Design
  31. Altmetric Badge
    Chapter 30 Vaccine Design
  32. Altmetric Badge
    Chapter 31 Flow Cytometric Analysis of Protective T-Cell Response Against Pulmonary Coccidioides Infection.
  33. Altmetric Badge
    Chapter 32 Vaccine Design
  34. Altmetric Badge
    Chapter 33 Vaccine Design
  35. Altmetric Badge
    Chapter 34 DNA Integration in Leishmania Genome: An Application for Vaccine Development and Drug Screening.
  36. Altmetric Badge
    Chapter 35 Vaccine Design
  37. Altmetric Badge
    Chapter 36 The Use of Microwave-Assisted Solid-Phase Peptide Synthesis and Click Chemistry for the Synthesis of Vaccine Candidates Against Hookworm Infection.
  38. Altmetric Badge
    Chapter 37 Methods and Protocols for Developing Prion Vaccines.
  39. Altmetric Badge
    Chapter 38 Ricin-Holotoxin-Based Vaccines: Induction of Potent Ricin-Neutralizing Antibodies.
  40. Altmetric Badge
    Chapter 39 Synthesis of Hapten-Protein Conjugate Vaccines with Reproducible Hapten Densities.
  41. Altmetric Badge
    Chapter 40 Production of Rice Seed-Based Allergy Vaccines.
  42. Altmetric Badge
    Chapter 41 Vaccine Design
  43. Altmetric Badge
    Chapter 42 Vaccine Design
  44. Altmetric Badge
    Chapter 43 Vaccine Design
  45. Altmetric Badge
    Chapter 44 Vaccine Design
  46. Altmetric Badge
    Chapter 45 T-Cell Epitope Discovery for Therapeutic Cancer Vaccines.
  47. Altmetric Badge
    Chapter 46 Peptide-Based Cancer Vaccine Strategies and Clinical Results.
  48. Altmetric Badge
    Chapter 47 Vaccine Design
  49. Altmetric Badge
    Chapter 48 Development of Antibody-Based Vaccines Targeting the Tumor Vasculature.
  50. Altmetric Badge
    Chapter 49 Practical Approaches to Forced Degradation Studies of Vaccines.
  51. Altmetric Badge
    Chapter 50 Erratum.
Attention for Chapter 17: Reverse Genetics Approaches to Control Arenavirus.
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Reverse Genetics Approaches to Control Arenavirus.
Chapter number 17
Book title
Vaccine Design
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3387-7_17
Pubmed ID
Book ISBNs
978-1-4939-3385-3, 978-1-4939-3387-7
Authors

Luis Martínez-Sobrido, Benson Yee Hin Cheng, Juan Carlos de la Torre

Editors

Sunil Thomas

Abstract

Several arenavirus cause hemorrhagic fever disease in humans and pose a significant public health problem in their endemic regions. To date, no licensed vaccines are available to combat human arenavirus infections, and anti-arenaviral drug therapy is limited to an off-label use of ribavirin that is only partially effective. The development of arenavirus reverse genetics approaches provides investigators with a novel and powerful approach for the investigation of the arenavirus molecular and cell biology. The use of cell-based minigenome systems has allowed examining the cis- and trans-acting factors involved in arenavirus replication and transcription and the identification of novel anti-arenaviral drug targets without requiring the use of live forms of arenaviruses. Likewise, it is now feasible to rescue infectious arenaviruses entirely from cloned cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis, as well as to facilitate screens to identify anti-arenaviral drugs and development of novel live-attenuated arenavirus vaccines. Recently, reverse genetics have also allowed the generation of tri-segmented arenaviruses expressing foreign genes, facilitating virus detection and opening the possibility of implementing live-attenuated arenavirus-based vaccine vector approaches. Likewise, the development of single-cycle infectious, reporter-expressing, arenaviruses has provided a new experimental method to study some aspects of the biology of highly pathogenic arenaviruses without the requirement of high-security biocontainment required to study HF-causing arenaviruses. In this chapter we summarize the current knowledge on arenavirus reverse genetics and the implementation of plasmid-based reverse genetics techniques for the development of arenavirus vaccines and vaccine vectors.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 21%
Researcher 6 18%
Student > Master 4 12%
Student > Postgraduate 3 9%
Other 2 6%
Other 4 12%
Unknown 7 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 33%
Immunology and Microbiology 4 12%
Medicine and Dentistry 3 9%
Nursing and Health Professions 2 6%
Arts and Humanities 1 3%
Other 4 12%
Unknown 8 24%