↓ Skip to main content

The Alkali Metal Ions: Their Role for Life

Overview of attention for book
Cover of 'The Alkali Metal Ions: Their Role for Life'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Bioinorganic Chemistry of the Alkali Metal Ions
  3. Altmetric Badge
    Chapter 2 The Alkali Metal Ions: Their Role for Life
  4. Altmetric Badge
    Chapter 3 The Alkali Metal Ions: Their Role for Life
  5. Altmetric Badge
    Chapter 4 Discriminating Properties of Alkali Metal Ions Towards the Constituents of Proteins and Nucleic Acids. Conclusions from Gas-Phase and Theoretical Studies
  6. Altmetric Badge
    Chapter 5 Alkali Metal Ion Complexes with Phosphates, Nucleotides, Amino Acids, and Related Ligands of Biological Relevance. Their Properties in Solution
  7. Altmetric Badge
    Chapter 6 Sodium and Potassium Interactions with Nucleic Acids
  8. Altmetric Badge
    Chapter 7 Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability
  9. Altmetric Badge
    Chapter 8 Sodium and Potassium Ions in Proteins and Enzyme Catalysis
  10. Altmetric Badge
    Chapter 9 Roles and Transport of Sodium and Potassium in Plants.
  11. Altmetric Badge
    Chapter 10 Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters
  12. Altmetric Badge
    Chapter 11 Sodium as Coupling Cation in Respiratory Energy Conversion
  13. Altmetric Badge
    Chapter 12 The Alkali Metal Ions: Their Role for Life
  14. Altmetric Badge
    Chapter 13 Proton-Potassium (H + /K + ) ATPases: Properties and Roles in Health and Diseases
  15. Altmetric Badge
    Chapter 14 Bioinspired Artificial Sodium and Potassium Ion Channels
  16. Altmetric Badge
    Chapter 15 The Alkali Metal Ions: Their Role for Life
  17. Altmetric Badge
    Chapter 16 Sodium and Potassium Relating to Parkinson’s Disease and Traumatic Brain Injury
Attention for Chapter 14: Bioinspired Artificial Sodium and Potassium Ion Channels
Altmetric Badge

About this Attention Score

  • Among the highest-scoring outputs from this source (#48 of 135)
  • Above-average Attention Score compared to outputs of the same age (55th percentile)

Mentioned by

4 Wikipedia pages


47 Dimensions

Readers on

12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Bioinspired Artificial Sodium and Potassium Ion Channels
Chapter number 14
Book title
The Alkali Metal Ions: Their Role for Life
Published in
Metal ions in life sciences, January 2016
DOI 10.1007/978-3-319-21756-7_14
Pubmed ID
Book ISBNs
978-3-31-921755-0, 978-3-31-921756-7

Nuria Rodríguez-Vázquez, Alberto Fuertes, Manuel Amorín, Juan R. Granja, Rodríguez-Vázquez, Nuria, Fuertes, Alberto, Amorín, Manuel, Granja, Juan R.


In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge.

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 33%
Professor 2 17%
Student > Doctoral Student 1 8%
Student > Master 1 8%
Unknown 4 33%
Readers by discipline Count As %
Engineering 2 17%
Chemistry 2 17%
Biochemistry, Genetics and Molecular Biology 1 8%
Chemical Engineering 1 8%
Unspecified 1 8%
Other 1 8%
Unknown 4 33%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 June 2021.
All research outputs
of 23,043,346 outputs
Outputs from Metal ions in life sciences
of 135 outputs
Outputs of similar age
of 394,754 outputs
Outputs of similar age from Metal ions in life sciences
of 28 outputs
Altmetric has tracked 23,043,346 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 135 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 5th percentile – i.e., 5% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 394,754 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.