↓ Skip to main content

Construction of dynamic probabilistic protein interaction networks for protein complex identification

Overview of attention for article published in BMC Bioinformatics, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
16 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Construction of dynamic probabilistic protein interaction networks for protein complex identification
Published in
BMC Bioinformatics, April 2016
DOI 10.1186/s12859-016-1054-1
Pubmed ID
Authors

Yijia Zhang, Hongfei Lin, Zhihao Yang, Jian Wang

Abstract

Recently, high-throughput experimental techniques have generated a large amount of protein-protein interaction (PPI) data which can construct large complex PPI networks for numerous organisms. System biology attempts to understand cellular organization and function by analyzing these PPI networks. However, most studies still focus on static PPI networks which neglect the dynamic information of PPI. The gene expression data under different time points and conditions can reveal the dynamic information of proteins. In this study, we used an active probability-based method to distinguish the active level of proteins at different active time points. We constructed dynamic probabilistic protein networks (DPPN) to integrate dynamic information of protein into static PPI networks. Based on DPPN, we subsequently proposed a novel method to identify protein complexes, which could effectively exploit topological structure as well as dynamic information of DPPN. We used three different yeast PPI datasets and gene expression data to construct three DPPNs. When applied to three DPPNs, many well-characterized protein complexes were accurately identified by this method. The shift from static PPI networks to dynamic PPI networks is essential to accurately identify protein complex. This method not only can be applied to identify protein complex, but also establish a framework to integrate dynamic information into static networks for other applications, such as pathway analysis.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 31%
Student > Bachelor 4 25%
Student > Ph. D. Student 3 19%
Student > Master 2 13%
Lecturer 1 6%
Other 0 0%
Unknown 1 6%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 25%
Computer Science 4 25%
Agricultural and Biological Sciences 4 25%
Environmental Science 1 6%
Psychology 1 6%
Other 1 6%
Unknown 1 6%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 May 2016.
All research outputs
#13,976,488
of 22,865,319 outputs
Outputs from BMC Bioinformatics
#4,482
of 7,295 outputs
Outputs of similar age
#154,348
of 299,013 outputs
Outputs of similar age from BMC Bioinformatics
#62
of 100 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,295 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 35th percentile – i.e., 35% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,013 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 100 others from the same source and published within six weeks on either side of this one. This one is in the 38th percentile – i.e., 38% of its contemporaries scored the same or lower than it.