↓ Skip to main content

Computational Design of Ligand Binding Proteins

Overview of attention for book
Cover of 'Computational Design of Ligand Binding Proteins'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 In silico Identification and Characterization of Protein-Ligand Binding Sites
  3. Altmetric Badge
    Chapter 2 Computational Modeling of Small Molecule Ligand Binding Interactions and Affinities.
  4. Altmetric Badge
    Chapter 3 Binding Site Prediction of Proteins with Organic Compounds or Peptides Using GALAXY Web Servers.
  5. Altmetric Badge
    Chapter 4 Computational Design of Ligand Binding Proteins
  6. Altmetric Badge
    Chapter 5 PocketOptimizer and the Design of Ligand Binding Sites.
  7. Altmetric Badge
    Chapter 6 Proteus and the Design of Ligand Binding Sites.
  8. Altmetric Badge
    Chapter 7 A Structure-Based Design Protocol for Optimizing Combinatorial Protein Libraries.
  9. Altmetric Badge
    Chapter 8 Computational Design of Ligand Binding Proteins
  10. Altmetric Badge
    Chapter 9 Computational Design of Ligand Binding Proteins
  11. Altmetric Badge
    Chapter 10 Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.
  12. Altmetric Badge
    Chapter 11 De Novo Design of Metalloproteins and Metalloenzymes in a Three-Helix Bundle.
  13. Altmetric Badge
    Chapter 12 Design of Light-Controlled Protein Conformations and Functions.
  14. Altmetric Badge
    Chapter 13 Computational Introduction of Catalytic Activity into Proteins.
  15. Altmetric Badge
    Chapter 14 Computational Design of Ligand Binding Proteins
  16. Altmetric Badge
    Chapter 15 Design of Specific Peptide-Protein Recognition.
  17. Altmetric Badge
    Chapter 16 Computational Design of DNA-Binding Proteins.
  18. Altmetric Badge
    Chapter 17 Motif-Driven Design of Protein-Protein Interfaces.
  19. Altmetric Badge
    Chapter 18 Computational Design of Ligand Binding Proteins
  20. Altmetric Badge
    Chapter 19 Computational Design of Ligand Binding Proteins
  21. Altmetric Badge
    Chapter 20 Computational Design of Protein Linkers.
  22. Altmetric Badge
    Chapter 21 Modeling of Protein-RNA Complex Structures Using Computational Docking Methods.
Attention for Chapter 6: Proteus and the Design of Ligand Binding Sites.
Altmetric Badge

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Proteus and the Design of Ligand Binding Sites.
Chapter number 6
Book title
Computational Design of Ligand Binding Proteins
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3569-7_6
Pubmed ID
Book ISBNs
978-1-4939-3567-3, 978-1-4939-3569-7
Authors

Savvas Polydorides, Eleni Michael, David Mignon, Karen Druart, Georgios Archontis, Thomas Simonson

Editors

Barry L. Stoddard

Abstract

This chapter describes the organization and use of Proteus, a multitool computational suite for the optimization of protein and ligand conformations and sequences, and the calculation of pK α shifts and relative binding affinities. The software offers the use of several molecular mechanics force fields and solvent models, including two generalized Born variants, and a large range of scoring functions, which can combine protein stability, ligand affinity, and ligand specificity terms, for positive and negative design. We present in detail the steps for structure preparation, system setup, construction of the interaction energy matrix, protein sequence and structure optimizations, pK α calculations, and ligand titration calculations. We discuss illustrative examples, including the chemical/structural optimization of a complex between the MHC class II protein HLA-DQ8 and the vinculin epitope, and the chemical optimization of the compstatin analog Ac-Val4Trp/His9Ala, which regulates the function of protein C3 of the complement system.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 2 50%
Student > Ph. D. Student 1 25%
Student > Postgraduate 1 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 25%
Computer Science 1 25%
Neuroscience 1 25%
Unknown 1 25%