↓ Skip to main content

A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing

Overview of attention for article published in Microbial Cell Factories, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

blogs
1 blog
googleplus
1 Google+ user

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
69 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A mesophilic anaerobic digester for treating food waste: process stability and microbial community analysis using pyrosequencing
Published in
Microbial Cell Factories, April 2016
DOI 10.1186/s12934-016-0466-y
Pubmed ID
Authors

Lei Li, Qin He, Yao Ma, Xiaoming Wang, Xuya Peng

Abstract

Anaerobic digesters become unstable when operated at a high organi c loading rate (OLR). Investigating the microbial community response to OLR disturbance is helpful for achieving efficient and stable process operation. However, previous studies have only focused on community succession during different process stages. How does community succession influence process stability? Is this kind of succession resilient? Are any key microbial indicator closely related to process stability? Such relationships between microbial communities and process stability are poorly understood. In this study, a mesophilic anaerobic digester for treating food waste (FW) was operated to study the microbial diversity and dynamicity due to OLR disturbance. Overloading resulted in proliferation of acidogenic bacteria, and the resulting high volatile fatty acid (VFA) yield triggered an abundance of acetogenic bacteria. However, the abundance and metabolic efficiency of hydrogenotrophic methanogens decreased after disturbance, and as a consequence, methanogens and acetogenic bacteria could not efficiently complete the syntrophy. This stress induced the proliferation of homoacetogens as alternative hydrogenotrophs for converting excessive H2 to acetate. However, the susceptible Methanothrix species also failed to degrade the excessive acetate. This metabolic imbalance finally led to process deterioration. After process recovery, the digester gradually returned to its original operational conditions, reached close to its original performance, and the microbial community profile achieved a new steady-state. Interestingly, the abundance of Syntrophomonas and Treponema increased during the deteriorative stage and rebounded after disturbance, suggesting they were resilient groups. Acidogenic bacteria showed high functional redundancy, rapidly adapted to the increased OLR, and shaped new microbial community profiles. The genera Syntrophomonas and Treponema were resilient groups. This observation provides insight into the key microbial indicator that are closely related to process stability. Moreover, the succession of methanogens during the disturbance phase was unsuitable for the metabolic function needed at high OLR. This contradiction resulted in process deterioration. Thus, methanogenesis is the main step that interferes with the stable operation of digesters at high OLR. Further studies on identifying and breeding high-efficiency methanogens may be helpful for breaking the technical bottleneck of process instability and achieving stable operation under high OLR.

Mendeley readers

The data shown below were compiled from readership statistics for 69 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 1%
Unknown 68 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 18 26%
Student > Ph. D. Student 13 19%
Unspecified 9 13%
Researcher 7 10%
Student > Postgraduate 6 9%
Other 16 23%
Readers by discipline Count As %
Environmental Science 19 28%
Engineering 17 25%
Unspecified 13 19%
Biochemistry, Genetics and Molecular Biology 7 10%
Agricultural and Biological Sciences 2 3%
Other 11 16%

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 April 2016.
All research outputs
#1,656,327
of 9,723,500 outputs
Outputs from Microbial Cell Factories
#86
of 808 outputs
Outputs of similar age
#64,241
of 275,382 outputs
Outputs of similar age from Microbial Cell Factories
#4
of 39 outputs
Altmetric has tracked 9,723,500 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 808 research outputs from this source. They receive a mean Attention Score of 3.6. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 275,382 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 39 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.