↓ Skip to main content

Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels

Overview of attention for article published in BMC Plant Biology, April 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
1 news outlet
twitter
1 X user
facebook
2 Facebook pages

Citations

dimensions_citation
189 Dimensions

Readers on

mendeley
221 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels
Published in
BMC Plant Biology, April 2016
DOI 10.1186/s12870-016-0791-7
Pubmed ID
Authors

Sara I. Zandalinas, Rosa M. Rivero, Vicente Martínez, Aurelio Gómez-Cadenas, Vicent Arbona

Abstract

In natural environments, several adverse environmental conditions occur simultaneously constituting a unique stress factor. In this work, physiological parameters and the hormonal regulation of Carrizo citrange and Cleopatra mandarin, two citrus genotypes, in response to the combined action of high temperatures and water deprivation were studied. The objective was to characterize particular responses to the stress combination. Experiments indicated that Carrizo citrange is more tolerant to the stress combination than Cleopatra mandarin. Furthermore, an experimental design spanning 24 h stress duration, heat stress applied alone induced higher stomatal conductance and transpiration in both genotypes whereas combined water deprivation partially counteracted this response. Comparing both genotypes, Carrizo citrange showed higher phostosystem-II efficiency and lower oxidative damage than Cleopatra mandarin. Hormonal profiling in leaves revealed that salicylic acid (SA) accumulated in response to individual stresses but to a higher extent in samples subjected to the combination of heat and drought (showing an additive response). SA accumulation correlated with the up-regulation of pathogenesis-related gene 2 (CsPR2), as a downstream response. On the contrary, abscisic acid (ABA) accumulation was higher in water-stressed plants followed by that observed in plants under stress combination. ABA signaling in these plants was confirmed by the expression of responsive to ABA-related gene 18 (CsRAB18). Modulation of ABA levels was likely carried out by the induction of 9-neoxanthin cis-epoxicarotenoid dioxygenase (CsNCED) and ABA 8'-hydroxylase (CsCYP707A) while conversion to ABA-glycosyl ester (ABAGE) was a less prominent process despite the strong induction of ABA O-glycosyl transferase (CsAOG). Cleopatra mandarin is more susceptible to the combination of high temperatures and water deprivation than Carrizo citrange. This is likely a result of a higher transpiration rate in Carrizo that could allow a more efficient cooling of leaf surface ensuring optimal CO2 intake. Hence, SA induction in Cleopatra was not sufficient to protect PSII from photoinhibition, resulting in higher malondialdehyde (MDA) build-up. Inhibition of ABA accumulation during heat stress and combined stresses was achieved primarily through the up-regulation of CsCYP707A leading to phaseic acid (PA) and dehydrophaseic acid (DPA) production. To sum up, data indicate that specific physiological responses to the combination of heat and drought exist in citrus. In addition, these responses are differently modulated depending on the particular stress tolerance of citrus genotypes.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 221 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 <1%
Chile 1 <1%
Unknown 219 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 41 19%
Researcher 36 16%
Student > Master 24 11%
Student > Doctoral Student 19 9%
Student > Bachelor 16 7%
Other 21 10%
Unknown 64 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 107 48%
Biochemistry, Genetics and Molecular Biology 16 7%
Environmental Science 9 4%
Engineering 6 3%
Medicine and Dentistry 4 2%
Other 7 3%
Unknown 72 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 May 2016.
All research outputs
#3,075,313
of 22,867,327 outputs
Outputs from BMC Plant Biology
#167
of 3,260 outputs
Outputs of similar age
#51,055
of 299,013 outputs
Outputs of similar age from BMC Plant Biology
#4
of 58 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,260 research outputs from this source. They receive a mean Attention Score of 3.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 299,013 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 58 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.