↓ Skip to main content

Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages

Overview of attention for article published in Journal of Neuroinflammation, May 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Citations

dimensions_citation
68 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dimethyl fumarate attenuates experimental autoimmune neuritis through the nuclear factor erythroid-derived 2-related factor 2/hemoxygenase-1 pathway by altering the balance of M1/M2 macrophages
Published in
Journal of Neuroinflammation, May 2016
DOI 10.1186/s12974-016-0559-x
Pubmed ID
Authors

Ranran Han, Jinting Xiao, Hui Zhai, Junwei Hao

Abstract

Guillain-Barré syndrome (GBS) is an acute, post-infectious, immune-mediated, demyelinating disease of peripheral nerves and nerve roots. Dimethyl fumarate (DMF), a fumaric acid ester, exhibits various biological activities, including multiple immunomodulatory and neuroprotective effects. However, the potential mechanism underlying the effect of DMF in GBS animal model experimental autoimmune neuritis (EAN) is unclear. Using EAN, an established GBS model, we investigated the effect of DMF by assessing clinical score, histological staining and electrophysiological studies. Then, we further explored the potential mechanism by Western blot analysis, flow cytometry, fluorescence immunohistochemistry, PCR, and ELISA analysis. The Mann-Whitney U test was used to compare differences between control group and treatment groups where appropriate. DMF treatment reduced the neurological deficits by ameliorating inflammatory cell infiltration and demyelination of sciatic nerves. In addition, DMF treatment decreased the level of pro-inflammatory M1 macrophages while increasing the number of anti-inflammatory M2 macrophages in the spleens and sciatic nerves of EAN rats. In RAW 264.7, a shift in macrophage polarization from M1 to M2 phenotype was demonstrated to be depended on DMF application. In sciatic nerves, DMF treatment elevated the level of the antioxidant transcription factor nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and its target gene hemoxygenase-1 (HO-1) which could facilitate macrophage polarization toward M2 type. Moreover, DMF improved the inflammatory milieu in spleens of EAN rats, characterized by downregulation of messenger RNA (mRNA) of IFN-γ, TNF-α, IL-6, and IL-17 and upregulation of mRNA level of IL-4 and IL-10. Taken together, our data demonstrate that DMF can effectively suppress EAN, and the mechanism involves altering the balance of M1/M2 macrophages and attenuating inflammation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 50 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 14%
Student > Bachelor 6 12%
Student > Doctoral Student 5 10%
Other 5 10%
Student > Master 5 10%
Other 7 14%
Unknown 16 31%
Readers by discipline Count As %
Medicine and Dentistry 7 14%
Neuroscience 6 12%
Biochemistry, Genetics and Molecular Biology 5 10%
Pharmacology, Toxicology and Pharmaceutical Science 4 8%
Agricultural and Biological Sciences 4 8%
Other 8 16%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 20 May 2016.
All research outputs
#12,955,227
of 22,867,327 outputs
Outputs from Journal of Neuroinflammation
#1,366
of 2,643 outputs
Outputs of similar age
#137,543
of 298,754 outputs
Outputs of similar age from Journal of Neuroinflammation
#30
of 59 outputs
Altmetric has tracked 22,867,327 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,643 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 298,754 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.