↓ Skip to main content

Lateral positioning for critically ill adult patients

Overview of attention for article published in Cochrane database of systematic reviews, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
20 tweeters
facebook
6 Facebook pages

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
181 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lateral positioning for critically ill adult patients
Published in
Cochrane database of systematic reviews, May 2016
DOI 10.1002/14651858.cd007205.pub2
Pubmed ID
Authors

Nicky Hewitt, Tracey Bucknall, Nardene M Faraone

Abstract

Critically ill patients require regular body position changes to minimize the adverse effects of bed rest, inactivity and immobilization. However, uncertainty surrounds the effectiveness of lateral positioning for improving pulmonary gas exchange, aiding drainage of tracheobronchial secretions and preventing morbidity. In addition, it is unclear whether the perceived risk levied by respiratory and haemodynamic instability upon turning critically ill patients outweighs the respiratory benefits of side-to-side rotation. Thus, lack of certainty may contribute to variation in positioning practice and equivocal patient outcomes. To evaluate effects of the lateral position compared with other body positions on patient outcomes (mortality, morbidity and clinical adverse events) in critically ill adult patients. (Clinical adverse events include hypoxaemia, hypotension, low oxygen delivery and global indicators of impaired tissue oxygenation.) We examined single use of the lateral position (i.e. on the right or left side) and repeat use of the lateral position (i.e. lateral positioning) within a positioning schedule. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2015, Issue 5), MEDLINE (1950 to 23 May 2015), the Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1937 to 23 May 2015), the Allied and Complementary Medicine Database (AMED) (1984 to 23 May 2015), Latin American Caribbean Health Sciences Literature (LILACS) (1901 to 23 May 2015), Web of Science (1945 to 23 May 2015), Index to Theses in Great Britain and Ireland (1950 to 23 May 2015), Trove (2009 to 23 May 2015; previously Australasian Digital Theses Program (1997 to December 2008)) and Proquest Dissertations and Theses (2009 to 23 May 2015; previously Proquest Digital Dissertations (1980 to 23 May 2015)). We handsearched the reference lists of potentially relevant reports and two nursing journals. We included randomized and quasi-randomized trials examining effects of lateral positioning in critically ill adults. We included manual or automated turns but limited eligibility to studies that included duration of body position of 10 minutes or longer. We examined each lateral position versus at least one comparator (opposite lateral position and/or another body position) for single therapy effects, and the lateral positioning schedule (repeated lateral turning) versus other positioning schedules for repetitive therapy effects. We pre-specified methods to be used for data collection, risk of bias assessment and analysis. Two independent review authors carried out each stage of selection and data extraction and settled differences in opinion by consensus, or by third party adjudication when disagreements remained unresolved. We planned analysis of pair-wise comparisons under composite time intervals with the aim of considering recommendations based on meta-analyses of studies with low risk of bias. We included 24 studies of critically ill adults. No study reported mortality as an outcome of interest. Two randomized controlled trials (RCTs) examined lateral positioning for pulmonary morbidity outcomes but provided insufficient information for meta-analysis. A total of 22 randomized trials examined effects of lateral positioning (four parallel-group and 18 cross-over designs) by measuring various continuous data outcomes commonly used to detect adverse cardiopulmonary events within critical care areas. However, parallel-group studies were not comparable, and cross-over studies provided limited data as the result of unit of analysis errors. Eight studies provided some data; most of these were single studies with small effects that were imprecise. We pooled partial pressure of arterial oxygen (PaO2) as a measure to detect hypoxaemia from two small studies of participants with unilateral lung disease (n = 19). The mean difference (MD) between lateral positions (bad lung down versus good lung down) was approximately 50 mmHg (MD -49.26 mmHg, 95% confidence interval (CI) -67.33 to -31.18; P value < 0.00001). Despite a lower mean PaO2 for bad lung down, hypoxaemia (mean PaO2 < 60 mmHg) was not consistently reported. Furthermore, pooled data had methodological shortcomings with unclear risk of bias. We had similar doubts regarding internal validity for other studies included in the review. Review authors could provide no clinical practice recommendations based on the findings of included studies. Available research could not eliminate the uncertainty surrounding benefits and/or risks associated with lateral positioning of critically ill adult patients. Research gaps include the effectiveness of lateral positioning compared with semi recumbent positioning for mechanically ventilated patients, lateral positioning compared with prone positioning for acute respiratory distress syndrome (ARDS) and less frequent changes in body position. We recommend that future research be undertaken to address whether the routine practice of repositioning patients on their side benefits all, some or few critically ill patients.

Twitter Demographics

The data shown below were collected from the profiles of 20 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 181 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 1%
United Kingdom 1 <1%
South Africa 1 <1%
Norway 1 <1%
Unknown 176 97%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 23%
Unspecified 28 15%
Student > Bachelor 26 14%
Researcher 16 9%
Other 16 9%
Other 52 29%
Unknown 1 <1%
Readers by discipline Count As %
Medicine and Dentistry 75 41%
Unspecified 35 19%
Nursing and Health Professions 34 19%
Psychology 7 4%
Social Sciences 5 3%
Other 24 13%
Unknown 1 <1%

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 June 2019.
All research outputs
#1,219,332
of 13,622,571 outputs
Outputs from Cochrane database of systematic reviews
#3,589
of 10,684 outputs
Outputs of similar age
#32,821
of 261,886 outputs
Outputs of similar age from Cochrane database of systematic reviews
#86
of 186 outputs
Altmetric has tracked 13,622,571 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,684 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 261,886 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 186 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.