↓ Skip to main content

Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain

Overview of attention for article published in Journal of Neuroinflammation, May 2016
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
25 Dimensions

Readers on

mendeley
35 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interferon gamma protects neonatal neural stem/progenitor cells during measles virus infection of the brain
Published in
Journal of Neuroinflammation, May 2016
DOI 10.1186/s12974-016-0571-1
Pubmed ID
Authors

Kristen N. Fantetti, Erica L. Gray, Priya Ganesan, Apurva Kulkarni, Lauren A. O’Donnell

Abstract

In the developing brain, self-renewing neural stem/progenitor cells (NSPC) give rise to neuronal and glial lineages. NSPC survival and differentiation can be altered by neurotropic viruses and by the anti-viral immune response. Several neurotropic viruses specifically target and infect NSPCs, in addition to inducing neuronal loss, which makes it difficult to distinguish between effects on NSPCs that are due to direct viral infection or due to the anti-viral immune response. We have investigated the impact of anti-viral immunity on NSPCs in measles virus (MV)-infected neonates. A neuron-restricted viral infection model was used, where NSPCs remain uninfected. Thus, an anti-viral immune response was induced without the confounding issue of NSPC infection. Two-transgenic mouse lines were used: CD46+ mice express the human isoform of CD46, the MV entry receptor, under the control of the neuron-specific enolase promoter; CD46+/IFNγ-KO mice lack the key anti-viral cytokine IFNγ. Multi-color flow cytometry and Western Blot analysis were used to quantify effects on NSPC, neuronal, and glial cell number, and quantify effects on IFNγ-mediated signaling and cell markers, respectively. Flow cytometric analysis revealed that NSPCs were reduced in CD46+/IFNγ-KO mice at 3, 7, and 10 days post-infection (dpi), but were unaffected in CD46+ mice. Early neurons showed the greatest cell loss at 7 dpi in both genotypes, with no effect on mature neurons and glial cells. Thus, IFNγ protected against NSPC loss, but did not protect young neurons. Western Blot analyses on hippocampal explants showed reduced nestin expression in the absence of IFNγ, and reduced doublecortin and βIII-tubulin in both genotypes. Phosphorylation of STAT1 and STAT2 occurred independently of IFNγ in the hippocampus, albeit with distinct regulation of activation. This is the first study to demonstrate bystander effects of anti-viral immunity on NSPC function. Our results show IFNγ protects the NSPC population during a neonatal viral CNS infection. Significant loss of NSPCs in CD46+/IFNγ-KO neonates suggests that the adaptive immune response is detrimental to NSPCs in the absence of IFNγ. These results reveal the importance and contribution of the anti-viral immune response to neuropathology and may be relevant to other neuroinflammatory conditions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 35 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 35 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 26%
Student > Bachelor 6 17%
Researcher 4 11%
Student > Master 4 11%
Student > Doctoral Student 3 9%
Other 6 17%
Unknown 3 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 20%
Biochemistry, Genetics and Molecular Biology 6 17%
Neuroscience 5 14%
Immunology and Microbiology 5 14%
Medicine and Dentistry 3 9%
Other 3 9%
Unknown 6 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2022.
All research outputs
#17,003,375
of 24,988,588 outputs
Outputs from Journal of Neuroinflammation
#1,971
of 2,891 outputs
Outputs of similar age
#197,644
of 319,012 outputs
Outputs of similar age from Journal of Neuroinflammation
#51
of 70 outputs
Altmetric has tracked 24,988,588 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,891 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.6. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 319,012 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.