↓ Skip to main content

Cerivastatin for lowering lipids

Overview of attention for article published in Cochrane database of systematic reviews, January 2020
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (57th percentile)

Mentioned by

twitter
6 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cerivastatin for lowering lipids
Published in
Cochrane database of systematic reviews, January 2020
DOI 10.1002/14651858.cd012501.pub2
Pubmed ID
Authors

Stephen P Adams, Nicholas Tiellet, Nima Alaeiilkhchi, James M Wright

Abstract

Cerivastatin was the most potent statin until it was withdrawn from the market due to a number of fatalities due to rhabdomyolysis, however, the dose-related magnitude of effect of cerivastatin on blood lipids is not known. Primary objective To quantify the effects of various doses of cerivastatin on the surrogate markers: LDL cholesterol, total cholesterol, HDL cholesterol and triglycerides in children and adults with and without cardiovascular disease. The aim of this review is to examine the pharmacology of cerivastatin by characterizing the dose-related effect and variability of the effect of cerivastatin on surrogate markers. Secondary objectives To quantify the effect of various doses of cerivastatin compared to placebo on withdrawals due to adverse effects. To compare the relative potency of cerivastatin with respect to fluvastatin, atorvastatin and rosuvastatin for LDL cholesterol, total cholesterol, HDL cholesterol and triglycerides. The Cochrane Hypertension Information Specialist searched the following databases for RCTs up to March 2019: CENTRAL (2019, Issue 3), Ovid MEDLINE, Ovid Embase, the WHO International Clinical Trials Registry Platform, and ClinicalTrials.gov.We also searched the European Patent Office, FDA.gov, and ProQuest Dissertations & Theses, and contacted authors of relevant papers regarding further published and unpublished work. The searches had no language restrictions. RCTs and controlled before-and-after studies evaluating the dose response of different fixed doses of cerivastatin on blood lipids over a duration of three to 12 weeks in participants of any age with and without cardiovascular disease. Two review authors independently assessed eligibility criteria for trials to be included and extracted data. We entered data from RCTs and controlled before-and-after studies into Review Manager 5 as continuous and generic inverse variance data respectively. We collected information on withdrawals due to adverse effects from the RCTs. We assessed all trials using the 'Risk of bias' tool under the categories of sequence generation, allocation concealment, blinding, incomplete outcome data, selective reporting, and other potential biases. Fifty trials (19 RCTs and 31 before-and-after studies) evaluated the dose-related efficacy of cerivastatin in 12,877 participants who had their LDL cholesterol measured. The participants were of any age with and without cardiovascular disease and the trials studied cerivastatin effects within a treatment period of three to 12 weeks. Cerivastatin 0.025 mg/day to 0.8 mg/day caused LDL cholesterol decreases of 11.0% to 40.8%, total cholesterol decreases of 8.0% to 28.8% and triglyceride decreases of 9.0% to 21.4%. We judged the certainty of evidence for these effects to be high. Log dose-response data over doses of 2.5 mg to 80 mg revealed strong linear dose-related effects on LDL cholesterol, total cholesterol and triglycerides. When compared to fluvastatin, atorvastatin and rosuvastatin, cerivastatin was about 250-fold more potent than fluvastatin, 20-fold more potent than atorvastatin and 5.5-fold more potent than rosuvastatin at reducing LDL cholesterol; 233-fold more potent than fluvastatin, 18-fold more potent than atorvastatin and six-fold more potent than rosuvastatin at reducing total cholesterol; and 125-fold more potent than fluvastatin, 11-fold more potent than atorvastatin and 13-fold more potent than rosuvastatin at reducing triglycerides. There was no dose-related effect of cerivastatin on HDL cholesterol, but overall cerivastatin increased HDL cholesterol by 5%. There was a high risk of bias for the outcome withdrawals due to adverse effects, but a low risk of bias for the lipid measurements. Withdrawals due to adverse effects were not different between cerivastatin and placebo in 11 of 19 of these short-term trials (risk ratio 1.09, 95% confidence interval 0.68 to 1.74). The LDL cholesterol, total cholesterol, and triglyceride lowering effect of cerivastatin was linearly dependent on dose. Cerivastatin log dose-response data were linear over the commonly prescribed dose range. Based on an informal comparison with fluvastatin, atorvastatin and rosuvastatin, cerivastatin was about 250-fold more potent than fluvastatin, 20-fold more potent than atorvastatin and 5.5-fold more potent than rosuvastatin in reducing LDL cholesterol, and 233-fold greater potency than fluvastatin, 18-fold greater potency than atorvastatin and six-fold greater potency than rosuvastatin at reducing total cholesterol. This review did not provide a good estimate of the incidence of harms associated with cerivastatin because of the short duration of the trials and the lack of reporting of adverse effects in 42% of the RCTs.

Twitter Demographics

The data shown below were collected from the profiles of 6 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 4 19%
Student > Ph. D. Student 3 14%
Student > Bachelor 2 10%
Researcher 2 10%
Professor 1 5%
Other 3 14%
Unknown 6 29%
Readers by discipline Count As %
Medicine and Dentistry 7 33%
Biochemistry, Genetics and Molecular Biology 2 10%
Nursing and Health Professions 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Computer Science 1 5%
Other 3 14%
Unknown 6 29%

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 February 2020.
All research outputs
#8,271,089
of 15,670,680 outputs
Outputs from Cochrane database of systematic reviews
#8,513
of 11,242 outputs
Outputs of similar age
#121,603
of 293,436 outputs
Outputs of similar age from Cochrane database of systematic reviews
#8
of 9 outputs
Altmetric has tracked 15,670,680 research outputs across all sources so far. This one is in the 46th percentile – i.e., 46% of other outputs scored the same or lower than it.
So far Altmetric has tracked 11,242 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.3. This one is in the 23rd percentile – i.e., 23% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 293,436 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 57% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one.