↓ Skip to main content

SWIFT-Review: a text-mining workbench for systematic review

Overview of attention for article published in Systematic Reviews, May 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Good Attention Score compared to outputs of the same age and source (70th percentile)

Mentioned by

twitter
19 X users

Citations

dimensions_citation
129 Dimensions

Readers on

mendeley
249 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
SWIFT-Review: a text-mining workbench for systematic review
Published in
Systematic Reviews, May 2016
DOI 10.1186/s13643-016-0263-z
Pubmed ID
Authors

Brian E. Howard, Jason Phillips, Kyle Miller, Arpit Tandon, Deepak Mav, Mihir R. Shah, Stephanie Holmgren, Katherine E. Pelch, Vickie Walker, Andrew A. Rooney, Malcolm Macleod, Ruchir R. Shah, Kristina Thayer

Abstract

There is growing interest in using machine learning approaches to priority rank studies and reduce human burden in screening literature when conducting systematic reviews. In addition, identifying addressable questions during the problem formulation phase of systematic review can be challenging, especially for topics having a large literature base. Here, we assess the performance of the SWIFT-Review priority ranking algorithm for identifying studies relevant to a given research question. We also explore the use of SWIFT-Review during problem formulation to identify, categorize, and visualize research areas that are data rich/data poor within a large literature corpus. Twenty case studies, including 15 public data sets, representing a range of complexity and size, were used to assess the priority ranking performance of SWIFT-Review. For each study, seed sets of manually annotated included and excluded titles and abstracts were used for machine training. The remaining references were then ranked for relevance using an algorithm that considers term frequency and latent Dirichlet allocation (LDA) topic modeling. This ranking was evaluated with respect to (1) the number of studies screened in order to identify 95 % of known relevant studies and (2) the "Work Saved over Sampling" (WSS) performance metric. To assess SWIFT-Review for use in problem formulation, PubMed literature search results for 171 chemicals implicated as EDCs were uploaded into SWIFT-Review (264,588 studies) and categorized based on evidence stream and health outcome. Patterns of search results were surveyed and visualized using a variety of interactive graphics. Compared with the reported performance of other tools using the same datasets, the SWIFT-Review ranking procedure obtained the highest scores on 11 out of 15 of the public datasets. Overall, these results suggest that using machine learning to triage documents for screening has the potential to save, on average, more than 50 % of the screening effort ordinarily required when using un-ordered document lists. In addition, the tagging and annotation capabilities of SWIFT-Review can be useful during the activities of scoping and problem formulation. Text-mining and machine learning software such as SWIFT-Review can be valuable tools to reduce the human screening burden and assist in problem formulation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 19 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 249 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 <1%
United Arab Emirates 1 <1%
Denmark 1 <1%
Canada 1 <1%
Unknown 245 98%

Demographic breakdown

Readers by professional status Count As %
Student > Master 42 17%
Researcher 39 16%
Student > Ph. D. Student 29 12%
Student > Bachelor 18 7%
Librarian 17 7%
Other 46 18%
Unknown 58 23%
Readers by discipline Count As %
Computer Science 43 17%
Medicine and Dentistry 36 14%
Agricultural and Biological Sciences 20 8%
Engineering 12 5%
Social Sciences 10 4%
Other 61 24%
Unknown 67 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 May 2018.
All research outputs
#3,324,001
of 24,312,464 outputs
Outputs from Systematic Reviews
#610
of 2,114 outputs
Outputs of similar age
#56,538
of 339,364 outputs
Outputs of similar age from Systematic Reviews
#10
of 31 outputs
Altmetric has tracked 24,312,464 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,114 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 13.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,364 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.