↓ Skip to main content

Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies

Overview of attention for article published in Journal of Translational Medicine, June 2016
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
3 tweeters

Citations

dimensions_citation
46 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Expression of PD-L1 in triple-negative breast cancer based on different immunohistochemical antibodies
Published in
Journal of Translational Medicine, June 2016
DOI 10.1186/s12967-016-0925-6
Pubmed ID
Authors

Woo Young Sun, Yu Kyung Lee, Ja Seung Koo

Abstract

To date, there are no effective therapeutic targeting agents for triple-negative breast cancer (TNBC), and PD-L1 has presented potential as an effective marker of immunotherapeutic agents. The aim of this study was to evaluate the expression of PD-L1 by three different immunohistochemical antibodies in TNBC. Interpretation of all three PD-L1 antibodies showed good concordance among three readers (kappa value >0.610) in both cancer cells and immune cells. Using a tissue microarray (TMA) constructed from 218 cases of TNBC, we performed immunohistochemical staining using three of the most popular commercially used PD-L1 monoclonal antibodies (clones 28-8, E1L3N and SP142) in cancer cells and immune cells. Using various cut-off values of previous studies (1, 5, 10 and 50 %), the expression rates in cancer cells were: PD-L1 (E1L3N) (14.7, 14.7, 11.0, 2.3 %), PD-L1 (28-8) (13.3, 12.4, 10.1, 1.8 %), and PD-L1 (SP142) (11.5, 11.0, 6.9, 0.5 %), respectively. At the 5 % cut-off value, the discordance rate among the three antibodies was 6.0-10.6 % and was highest between PD-L1 (SP142) and the other two antibodies. The expression rates in immune cells were PD-L1 (E1L3N) (37.6 %), PD-L1 (28-8) (36.7 %), and PD-L1 (SP142) (19.3 %), and the discordance rate among the three antibodies ranged from 13.8 to 24.8 % and was also highest between PD-L1 (SP142) and the other two antibodies. Among stromal histologic types, higher PD-L1 expression in cancer cells and immune cells was measured in inflammatory-type (p < 0.05). The absence of PD-L1 (28-8) staining in immune cells was associated with shorter disease free survival (DFS) and overall survival (OS) (p = 0.043, and p = 0.021) in univariate analyses, and with shorter OS in multivariate Cox analysis (hazard ratio: 5.429, 95 % CI 1.214-24.28, p = 0.027). PD-L1 detection in cancer cells and immune cells varied by antibody clone. The greatest amount of staining occurred with PD-L1 (E1L3N), followed by PD-L1 (28-8) and PD-L1 (SP142). The concordance rate among monoclonal PD-L1 antibodies was higher between PD-L1 (28-8) and PD-L1 (E1L3N). To determine the gold standard antibody and the most appropriate cut-off value, further study of the clinical trial group treated with PD-L1 inhibitor is necessary.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 54 100%

Demographic breakdown

Readers by professional status Count As %
Other 8 15%
Student > Master 7 13%
Student > Doctoral Student 6 11%
Researcher 6 11%
Student > Postgraduate 5 9%
Other 12 22%
Unknown 10 19%
Readers by discipline Count As %
Medicine and Dentistry 23 43%
Biochemistry, Genetics and Molecular Biology 5 9%
Nursing and Health Professions 4 7%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Chemistry 2 4%
Other 7 13%
Unknown 11 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 October 2016.
All research outputs
#4,097,948
of 8,594,027 outputs
Outputs from Journal of Translational Medicine
#752
of 1,872 outputs
Outputs of similar age
#124,300
of 273,437 outputs
Outputs of similar age from Journal of Translational Medicine
#49
of 120 outputs
Altmetric has tracked 8,594,027 research outputs across all sources so far. This one has received more attention than most of these and is in the 50th percentile.
So far Altmetric has tracked 1,872 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.9. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 273,437 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.