↓ Skip to main content

Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum

Overview of attention for article published in Stem Cell Research & Therapy, June 2016
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
55 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Multipotency and cardiomyogenic potential of human adipose-derived stem cells from epicardium, pericardium, and omentum
Published in
Stem Cell Research & Therapy, June 2016
DOI 10.1186/s13287-016-0343-y
Pubmed ID
Authors

Wojciech Wystrychowski, Bhagat Patlolla, Yan Zhuge, Evgenios Neofytou, Robert C. Robbins, Ramin E. Beygui

Abstract

Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs). Taking into account the different morphogenesis, anatomy, and physiology of adipose tissue, we hypothesized that ADSCs from different adipose tissue depots may exert a diverse multipotency and cardiogenic potential. The omental, pericardial, and epicardial adipose tissue samples were obtained from organ donors and patients undergoing heart transplantation at our institution. Human foreskin fibroblasts were used as the control group. Isolated ADSCs were analyzed for adipogenic and osteogenic differentiation capacity and proliferation potential. The immunophenotype and constitutive gene expression of alkaline phosphatase (ALP), GATA4, Nanog, and OCT4 were analyzed. DNA methylation inhibitor 5-azacytidine was exposed to the cells to stimulate the cardiogenesis. Finally, reprogramming towards cardiomyocytes was initiated with exogenous overexpression of seven transcription factors (ESRRG, GATA4, MEF2C, MESP1, MYOCD, TBX5, ZFPM2) previously applied successfully for fibroblast transdifferentiation toward cardiomyocytes. Expression of cardiac troponin T (cTNT) and alpha-actinin (Actn2) was analyzed 3 weeks after initiation of the cardiac differentiation. The multipotent properties of isolated plastic adherent cells were confirmed with expression of CD29, CD44, CD90, and CD105, as well as successful differentiation toward adipocytes and osteocytes; with the highest osteogenic and adipogenic potential for the epicardial and omental ADSCs, respectively. Epicardial ADSCs demonstrated a lower doubling time as compared with the pericardium and omentum-derived cells. Furthermore, epicardial ADSCs revealed higher constitutive expression of ALP and GATA4. Increased Actn2 and cTNT expression was observed after the transduction of seven reprogramming factors, with the highest expression in the epicardial ADSCs, as compared with the other ADSC subtypes and fibroblasts. Human epicardial ADSCs revealed a higher cardiomyogenic potential as compared with the pericardial and omental ADSC subtypes as well as the fibroblast counterparts. Epicardial ADSCs may thus serve as the valuable subject for further studies on more effective methods of adult stem cell differentiation toward cardiomyocytes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 7 13%
Student > Ph. D. Student 6 11%
Student > Master 6 11%
Student > Bachelor 6 11%
Researcher 5 9%
Other 13 24%
Unknown 12 22%
Readers by discipline Count As %
Medicine and Dentistry 15 27%
Biochemistry, Genetics and Molecular Biology 10 18%
Agricultural and Biological Sciences 8 15%
Engineering 2 4%
Immunology and Microbiology 2 4%
Other 3 5%
Unknown 15 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 15 June 2016.
All research outputs
#17,808,979
of 22,877,793 outputs
Outputs from Stem Cell Research & Therapy
#1,589
of 2,424 outputs
Outputs of similar age
#252,555
of 352,763 outputs
Outputs of similar age from Stem Cell Research & Therapy
#17
of 22 outputs
Altmetric has tracked 22,877,793 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,424 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.0. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 352,763 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 24th percentile – i.e., 24% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.