↓ Skip to main content

Data Mining Techniques for the Life Sciences

Overview of attention for book
Cover of 'Data Mining Techniques for the Life Sciences'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Data Mining Techniques for the Life Sciences
  3. Altmetric Badge
    Chapter 2 Protein Structure Databases.
  4. Altmetric Badge
    Chapter 3 The MIntAct Project and Molecular Interaction Databases.
  5. Altmetric Badge
    Chapter 4 Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.
  6. Altmetric Badge
    Chapter 5 Classification and Exploration of 3D Protein Domain Interactions Using Kbdock.
  7. Altmetric Badge
    Chapter 6 Data Mining of Macromolecular Structures.
  8. Altmetric Badge
    Chapter 7 Criteria to Extract High-Quality Protein Data Bank Subsets for Structure Users.
  9. Altmetric Badge
    Chapter 8 Homology-Based Annotation of Large Protein Datasets.
  10. Altmetric Badge
    Chapter 9 Data Mining Techniques for the Life Sciences
  11. Altmetric Badge
    Chapter 10 Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins.
  12. Altmetric Badge
    Chapter 11 Systematic Exploration of an Efficient Amino Acid Substitution Matrix: MIQS.
  13. Altmetric Badge
    Chapter 12 Promises and Pitfalls of High-Throughput Biological Assays.
  14. Altmetric Badge
    Chapter 13 Data Mining Techniques for the Life Sciences
  15. Altmetric Badge
    Chapter 14 Predicting Conformational Disorder.
  16. Altmetric Badge
    Chapter 15 Classification of Protein Kinases Influenced by Conservation of Substrate Binding Residues.
  17. Altmetric Badge
    Chapter 16 Spectral-Statistical Approach for Revealing Latent Regular Structures in DNA Sequence.
  18. Altmetric Badge
    Chapter 17 Protein Crystallizability.
  19. Altmetric Badge
    Chapter 18 Data Mining Techniques for the Life Sciences
  20. Altmetric Badge
    Chapter 19 Data Mining Techniques for the Life Sciences
  21. Altmetric Badge
    Chapter 20 Functional Analysis of Metabolomics Data.
  22. Altmetric Badge
    Chapter 21 Data Mining Techniques for the Life Sciences
  23. Altmetric Badge
    Chapter 22 A Broad Overview of Computational Methods for Predicting the Pathophysiological Effects of Non-synonymous Variants.
  24. Altmetric Badge
    Chapter 23 Recommendation Techniques for Drug-Target Interaction Prediction and Drug Repositioning.
  25. Altmetric Badge
    Chapter 24 Protein Residue Contacts and Prediction Methods.
  26. Altmetric Badge
    Chapter 25 The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment.
  27. Altmetric Badge
    Chapter 26 Data Mining Techniques for the Life Sciences
  28. Altmetric Badge
    Chapter 27 Data Mining Techniques for the Life Sciences
Attention for Chapter 18: Data Mining Techniques for the Life Sciences
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (85th percentile)
  • High Attention Score compared to outputs of the same age and source (92nd percentile)

Mentioned by

blogs
1 blog
twitter
6 X users

Citations

dimensions_citation
9 Dimensions

Readers on

mendeley
15 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Data Mining Techniques for the Life Sciences
Chapter number 18
Book title
Data Mining Techniques for the Life Sciences
Published in
Methods in molecular biology, January 2016
DOI 10.1007/978-1-4939-3572-7_18
Pubmed ID
Book ISBNs
978-1-4939-3570-3, 978-1-4939-3572-7
Authors

Loh, Yong-Hwee Eddie, Shen, Li, Yong-Hwee Eddie Loh, Li Shen

Editors

Oliviero Carugo, Frank Eisenhaber

Abstract

The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 5 33%
Professor > Associate Professor 3 20%
Other 1 7%
Student > Ph. D. Student 1 7%
Lecturer 1 7%
Other 2 13%
Unknown 2 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 27%
Computer Science 4 27%
Agricultural and Biological Sciences 4 27%
Medicine and Dentistry 1 7%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 May 2016.
All research outputs
#3,065,240
of 22,865,319 outputs
Outputs from Methods in molecular biology
#655
of 13,127 outputs
Outputs of similar age
#55,163
of 393,648 outputs
Outputs of similar age from Methods in molecular biology
#111
of 1,470 outputs
Altmetric has tracked 22,865,319 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 13,127 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,648 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 85% of its contemporaries.
We're also able to compare this research output to 1,470 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 92% of its contemporaries.