↓ Skip to main content

Experimental evolution under hyper-promiscuity in Drosophila melanogaster

Overview of attention for article published in BMC Ecology and Evolution, June 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

twitter
14 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Experimental evolution under hyper-promiscuity in Drosophila melanogaster
Published in
BMC Ecology and Evolution, June 2016
DOI 10.1186/s12862-016-0699-8
Pubmed ID
Authors

Jennifer C. Perry, Richa Joag, David J. Hosken, Nina Wedell, Jacek Radwan, Stuart Wigby

Abstract

The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic manipulations of animal social and sexual environments coupled with experimental evolution.

X Demographics

X Demographics

The data shown below were collected from the profiles of 14 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 30%
Researcher 9 17%
Student > Bachelor 4 8%
Student > Postgraduate 4 8%
Student > Master 4 8%
Other 5 9%
Unknown 11 21%
Readers by discipline Count As %
Agricultural and Biological Sciences 25 47%
Biochemistry, Genetics and Molecular Biology 8 15%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Earth and Planetary Sciences 1 2%
Neuroscience 1 2%
Other 1 2%
Unknown 16 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2016.
All research outputs
#4,808,603
of 25,374,647 outputs
Outputs from BMC Ecology and Evolution
#1,218
of 3,714 outputs
Outputs of similar age
#77,009
of 353,558 outputs
Outputs of similar age from BMC Ecology and Evolution
#30
of 76 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,558 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 76 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.