↓ Skip to main content

A human and animal model-based approach to investigating the anti-inflammatory profile and potential of the 5-HT2B receptor antagonist AM1030

Overview of attention for article published in Journal of Inflammation, June 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A human and animal model-based approach to investigating the anti-inflammatory profile and potential of the 5-HT2B receptor antagonist AM1030
Published in
Journal of Inflammation, June 2016
DOI 10.1186/s12950-016-0127-2
Pubmed ID
Authors

Niklas Palmqvist, Max Siller, Cecilia Klint, Anders Sjödin

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic eczematous lesions that are commonly treated with topical corticosteroids and calcineurin inhibitors. Side-effects and safety concerns associated with these agents restrict their use, and new, safe treatment options are therefore needed. Recent reports suggest that serotonin, i.e. 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor family may contribute to inflammation and pruritus in the skin. The objective of this particular study was to investigate the 5HT2B receptor antagonist AM1030 with respect to its anti-inflammatory profile and potential. AM1030 was tested in a set of distinct human and rodent in vitro and in vivo models, differing with respect to e.g. T cell involvement, triggering stimulus, main read-outs and route of drug administration. The in vitro systems used were staphylococcal enterotoxin A (SEA)-stimulated human peripheral blood mononuclear cells, lipopolysaccharide (LPS)-stimulated human primary monocytes, LPS-stimulated human THP-1 monocytes and LPS-stimulated mouse primary macrophages. The in vivo systems used were LPS- and SEA-induced cytokine production in the mouse, antigen-induced arthritis in the rat, glucose-6-phosphate isomerase-induced arthritis in the mouse and delayed-type hypersensitivity reaction in the mouse. In addition, different cell populations were analyzed with respect to their expression of the 5-HT2B receptor at the mRNA level. AM1030 significantly reduced both T cell-dependent and T cell-independent inflammatory responses, in vivo and in vitro. Due to the low or absent expression of the 5-HT2B receptor on T cell populations, the influence of AM1030 in T cell-dependent systems is suggested to be mediated via an indirect effect involving antigen-presenting cell types, such as monocytes and macrophages. Based on the wide range of model systems used in this study, differing e.g. with respect to species, T cell involvement, triggering stimuli, route of drug administration and read-outs, our results suggest a broad anti-inflammatory effect of AM1030 and identify the 5-HT2B receptor as a promising future target for anti-inflammatory intervention, e.g. in AD.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 19 100%

Demographic breakdown

Readers by professional status Count As %
Other 3 16%
Student > Bachelor 3 16%
Student > Ph. D. Student 3 16%
Researcher 3 16%
Student > Doctoral Student 2 11%
Other 3 16%
Unknown 2 11%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 3 16%
Medicine and Dentistry 3 16%
Biochemistry, Genetics and Molecular Biology 2 11%
Agricultural and Biological Sciences 2 11%
Immunology and Microbiology 1 5%
Other 3 16%
Unknown 5 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 June 2016.
All research outputs
#20,657,128
of 25,374,917 outputs
Outputs from Journal of Inflammation
#278
of 425 outputs
Outputs of similar age
#284,105
of 368,615 outputs
Outputs of similar age from Journal of Inflammation
#5
of 10 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 425 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 7th percentile – i.e., 7% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 368,615 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 10 others from the same source and published within six weeks on either side of this one. This one has scored higher than 5 of them.