↓ Skip to main content

Third-stage Gnathostoma spinigerum larva excretory secretory antigens modulate function of Fc gamma receptor I-mediated monocytes in peripheral blood mononuclear cell culture

Overview of attention for article published in Tropical Medicine and Health, April 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Third-stage Gnathostoma spinigerum larva excretory secretory antigens modulate function of Fc gamma receptor I-mediated monocytes in peripheral blood mononuclear cell culture
Published in
Tropical Medicine and Health, April 2016
DOI 10.1186/s41182-016-0005-x
Pubmed ID
Authors

Surachet Benjathummarak, Ratchanok Kumsiri, Supaporn Nuamtanong, Thareerat Kalambaheti, Jitra Waikagul, Nareerat Viseshakul, Yaowapa Maneerat

Abstract

Third (infective)-stage Gnathostoma spinigerum larvae (L3) mainly cause human gnathostomiasis. G. spinigerum L3 migrate throughout the subcutaneous tissues, vital organs, and central nervous system and can cause various pathogenesis including sudden death. Interestingly, G. spinigerum L3 can survive and evade host cellular immunity for months or years. The effects of G. spinigerum excretory-secretory (ES) products involved in larval migration and immune-evasive strategies are unknown. Monocytes are innate immune cells that act as phagocytic and antigen-presenting cells and also play roles against helminthic infections via a complex interplay between other immune cells. Fc gamma receptor I (FcγRI) is a high-affinity receptor that is particularly expressed on monocytes, macrophages, and dendritic cells. The cross-linking of FcγRI and antigen-antibody complex initiates signal transduction cascades in phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). This study investigated whether ES antigen (ESA) from G. spinigerum L3 affects monocyte functions. Cultures of normal peripheral blood mononuclear cells (PBMC) separated from healthy buffy coats were used as a human immune cell model. ESA was prepared from G. spinigerum L3 culture. Using Real-Time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), the effect of ESA to down-regulate FcγRI mRNA expression in monocytes during 90 min of observation was not well delineated. Flow cytometry analysis revealed a significant phenotypic-decreased FcγRI expression on the monocyte surface at 12 hours (h) of cultivation with the ESA (p = 0.033). Significantly reduced monocyte-mediated phagocytosis capacity was consistently observed after 12 h of ESA pretreatment (p = 0.001). Our results suggest that G. spinigerum ESA modulates monocyte function via depletion of FcγRI expression. This study provides preliminary information for future in-depth studies to elucidate mechanisms of the immune-evasive strategy of G. spinigerum larvae.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 23%
Researcher 3 23%
Student > Bachelor 1 8%
Librarian 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 3 23%
Readers by discipline Count As %
Medicine and Dentistry 3 23%
Veterinary Science and Veterinary Medicine 2 15%
Agricultural and Biological Sciences 2 15%
Arts and Humanities 1 8%
Immunology and Microbiology 1 8%
Other 1 8%
Unknown 3 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 July 2016.
All research outputs
#16,047,334
of 25,374,647 outputs
Outputs from Tropical Medicine and Health
#206
of 441 outputs
Outputs of similar age
#172,000
of 313,611 outputs
Outputs of similar age from Tropical Medicine and Health
#6
of 13 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 34th percentile – i.e., 34% of other outputs scored the same or lower than it.
So far Altmetric has tracked 441 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 313,611 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 42nd percentile – i.e., 42% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.