↓ Skip to main content

Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, July 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
2 X users
reddit
1 Redditor

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Lessons learned from the microbial ecology resulting from different inoculation strategies for biogas production from waste products of the bioethanol/sugar industry
Published in
Biotechnology for Biofuels and Bioproducts, July 2016
DOI 10.1186/s13068-016-0548-4
Pubmed ID
Authors

Athaydes Francisco Leite, Leandro Janke, Hauke Harms, Hans-Hermann Richnow, Marcell Nikolausz

Abstract

During strategic planning of a biogas plant, the local availability of resources for start-up and operation should be taken into consideration for a cost-efficient process. Because most bioethanol/sugar industries in Brazil are located in remote areas, the use of fresh cattle manure from local farms could be a solution for the inoculation of the biogas process. This study investigated the diversity and dynamics of bacterial and archaeal communities and the performance of biogas reactors inoculated with manure and a mixed inoculum from different biogas reactors as for a controlled start-up until steady state. Laboratory-scale biogas reactors were fed semi-continuously with sugarcane filter cake alone (mono-digestion) or together with bagasse (co-digestion). At the initial start-up, the reactors inoculated with the mixed inoculum displayed a less diverse taxonomic composition, but with higher presence of significant abundances compared to reactors inoculated with manure. However, in the final steady state, the communities of the differently inoculated reactors were very similarly characterized by predominance of the methanogenic genera Methanosarcina and Methanobacterium, the bacterial families Bacteroidaceae, Prevotellaceae and Porphyromonadaceae (phylum Bacteroidetes) and Synergistaceae (phylum Synergistetes). In the mono-digestion reactors, the methanogenic communities varied greater than in the co-digestion reactors independently of the inoculation strategy. The microbial communities involved in the biogas production from waste products of the Brazilian bioethanol/sugar industry were relatively similar and stable at the reactor's steady phase independently of the inoculum source (manure or mixed inoculum). Therefore, the locally available manure can be used as inoculum for start-up of the biogas process, since it also contains the microbial resources needed. The strong fluctuation of methanogenic communities in mono-digestion reactors indicates higher risk of process instability than in co-digestion reactors.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Thailand 1 2%
Unknown 52 98%

Demographic breakdown

Readers by professional status Count As %
Researcher 13 25%
Student > Ph. D. Student 10 19%
Student > Master 6 11%
Student > Doctoral Student 3 6%
Professor 3 6%
Other 7 13%
Unknown 11 21%
Readers by discipline Count As %
Environmental Science 14 26%
Agricultural and Biological Sciences 8 15%
Energy 4 8%
Engineering 3 6%
Biochemistry, Genetics and Molecular Biology 2 4%
Other 7 13%
Unknown 15 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 January 2020.
All research outputs
#15,739,010
of 25,371,288 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#862
of 1,578 outputs
Outputs of similar age
#216,643
of 372,889 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#22
of 47 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 372,889 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 47 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.