↓ Skip to main content

Percutaneous techniques versus surgical techniques for tracheostomy

Overview of attention for article published in Cochrane database of systematic reviews, July 2016
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

policy
1 policy source
twitter
12 tweeters
facebook
3 Facebook pages

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
133 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Percutaneous techniques versus surgical techniques for tracheostomy
Published in
Cochrane database of systematic reviews, July 2016
DOI 10.1002/14651858.cd008045.pub2
Pubmed ID
Authors

Patrick Brass, Martin Hellmich, Angelika Ladra, Jürgen Ladra, Anna Wrzosek

Abstract

Tracheostomy formation is one of the most commonly performed surgical procedures in critically ill intensive care participants requiring long-term mechanical ventilation. Both surgical tracheostomies (STs) and percutaneous tracheostomies (PTs) are used in current surgical practice; but until now, the optimal method of performing tracheostomies in critically ill participants remains unclear. We evaluated the effectiveness and safety of percutaneous techniques compared to surgical techniques commonly used for elective tracheostomy in critically ill participants (adults and children) to assess whether there was a difference in complication rates between the procedures. We also assessed whether the effect varied between different groups of participants or settings (intensive care unit (ICU), operating room), different levels of operator experience, different percutaneous techniques, or whether the percutaneous techniques were carried out with or without bronchoscopic guidance. We searched the following electronic databases: CENTRAL, MEDLINE, EMBASE, and CINAHL to 28 May 2015. We also searched reference lists of articles, 'grey literature', and dissertations. We handsearched intensive care and anaesthesia journals, abstracts, and proceedings of scientific meetings. We attempted to identify unpublished or ongoing studies by contacting manufacturers and experts in the field, and searching in trial registers. We included randomized and quasi-randomized controlled trials (quasi-RCTs) comparing percutaneous techniques (experimental intervention) with surgical techniques (control intervention) used for elective tracheostomy in critically ill participants (adults and children). Three authors independently checked eligibility and extracted data on methodological quality, participant characteristics, intervention details, settings, and outcomes of interest using a standardized form. We then entered data into Review Manager 5, with a double-entry procedure. Of 785 identified citations, 20 trials from 1990 to 2011 enrolling 1652 participants fulfilled the inclusion criteria. We judged most of the trials to be at low or unclear risk of bias across the six domains, and we judged four studies to have elements of high risk of bias; we did not classify any studies at overall low risk of bias. The quality of evidence was low for five of the seven outcomes (very low N = 1, moderate N = 1) and there was heterogeneity among the studies. There was a variety of adult participants and the procedures were performed by a wide range of differently experienced operators in different situations.There was no evidence of a difference in the rate of the primary outcomes: mortality directly related to the procedure (Peto odds ratio (POR) 0.52, 95% confidence interval (CI) 0.10 to 2.60, I² = 44%, P = 0.42, 4 studies, 257 participants, low quality evidence); and serious, life-threatening adverse events - intraoperatively: risk ratio (RR) 0.93, 95% CI 0.57 to 1.53, I² = 27%, P = 0.78, 12 studies, 1211 participants, low quality evidence,and direct postoperatively: RR 0.72, 95% CI 0.41 to 1.25, I² = 24%, P = 0.24, 10 studies, 984 participants, low quality evidence.PTs significantly reduce the rate of the secondary outcome, wound infection/stomatitis by 76% (RR 0.24, 95% CI 0.15 to 0.37, I² = 0%, P < 0.00001, 12 studies, 936 participants, moderate quality evidence) and the rate of unfavourable scarring by 75% (RR 0.25, 95% CI 0.07 to 0.91, I² = 86%, P = 0.04, 6 studies, 789 participants, low quality evidence). There was no evidence of a difference in the rate of the secondary outcomes, major bleeding (RR 0.70, 95% CI 0.45 to 1.09, I² = 47%, P = 0.12, 10 studies, 984 participants, very low quality evidence) and tracheostomy tube occlusion/obstruction, accidental decannulation, difficult tube change (RR 1.36, 95% CI 0.65 to 2.82, I² = 22%, P = 0.42, 6 studies, 538 participants, low quality evidence). When compared to STs, PTs significantly reduce the rate of wound infection/stomatitis (moderate quality evidence) and the rate of unfavourable scarring (low quality evidence due to imprecision and heterogeneity). In terms of mortality and the rate of serious adverse events, there was low quality evidence that non-significant positive effects exist for PTs. In terms of the rate of major bleeding, there was very low quality evidence that non-significant positive effects exist for PTs.However, because several groups of participants were excluded from the included studies, the number of participants in the included studies was limited, long-term outcomes were not evaluated, and data on participant-relevant outcomes were either sparse or not available for each study, the results of this meta-analysis are limited and cannot be applied to all critically ill adults.

Twitter Demographics

The data shown below were collected from the profiles of 12 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 133 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 <1%
Unknown 132 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 26 20%
Student > Bachelor 17 13%
Other 13 10%
Researcher 12 9%
Student > Postgraduate 11 8%
Other 29 22%
Unknown 25 19%
Readers by discipline Count As %
Medicine and Dentistry 71 53%
Nursing and Health Professions 14 11%
Social Sciences 6 5%
Psychology 4 3%
Neuroscience 3 2%
Other 4 3%
Unknown 31 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 September 2018.
All research outputs
#1,592,856
of 13,514,418 outputs
Outputs from Cochrane database of systematic reviews
#4,257
of 10,621 outputs
Outputs of similar age
#42,717
of 262,955 outputs
Outputs of similar age from Cochrane database of systematic reviews
#68
of 153 outputs
Altmetric has tracked 13,514,418 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,621 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one has gotten more attention than average, scoring higher than 59% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 262,955 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 153 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.