↓ Skip to main content

Progress in the Mathematical Modelling of Visceral Leishmaniasis

Overview of attention for article published in Advances in Parasitology, January 2016
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (63rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
119 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Progress in the Mathematical Modelling of Visceral Leishmaniasis
Published in
Advances in Parasitology, January 2016
DOI 10.1016/bs.apar.2016.08.001
Pubmed ID
Authors

Rock, K S, Quinnell, R J, Medley, G F, Courtenay, O

Abstract

The leishmaniases comprise a complex of diseases characterized by clinical outcomes that range from self-limiting to chronic, and disfiguring and stigmatizing to life threatening. Diagnostic methods, treatments, and vector and reservoir control options exist, but deciding the most effective interventions requires a quantitative understanding of the population level infection and disease dynamics. The effectiveness of any set of interventions has to be determined within the context of operational conditions, including economic and political commitment. Mathematical models are the best available tools for studying quantitative systems crossing disciplinary spheres (biology, medicine, economics) within environmental and societal constraints. In 2005, the World Health Assembly and government health ministers of India, Nepal, and Bangladesh signed a Memorandum of Understanding to eliminate the life threatening form of leishmaniasis, visceral leishmaniasis (VL), on the Indian subcontinent by 2015 through a combination of early case detection, improved treatments, and vector control. The elimination target is <1 case/10,000 population at the district or subdistrict level compared to the current 20/10,000 in the regions of highest transmission. Towards this goal, this chapter focuses on mathematical models of VL, and the biology driving those models, to enable realistic predictions of the best combination of interventions. Several key issues will be discussed which have affected previous modelling of VL and the direction future modelling may take. Current understanding of the natural history of disease, immunity (and loss of immunity), and stages of infection and their durations are considered particularly for humans, and also for dogs. Asymptomatic and clinical infection are discussed in the context of their relative roles in Leishmania transmission, as well as key components of the parasite-sandfly-vector interaction and intervention strategies including diagnosis, treatment and vector control. Gaps in current biological knowledge and potential avenues to improve model structures and mathematical predictions are identified. Underpinning the marriage between biology and mathematical modelling, the content of this chapter represents the first step towards developing the next generation of models for VL.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 119 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 119 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 25 21%
Researcher 17 14%
Student > Ph. D. Student 16 13%
Student > Bachelor 15 13%
Student > Doctoral Student 8 7%
Other 9 8%
Unknown 29 24%
Readers by discipline Count As %
Medicine and Dentistry 21 18%
Agricultural and Biological Sciences 11 9%
Veterinary Science and Veterinary Medicine 8 7%
Biochemistry, Genetics and Molecular Biology 7 6%
Immunology and Microbiology 7 6%
Other 30 25%
Unknown 35 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2016.
All research outputs
#14,864,294
of 22,893,031 outputs
Outputs from Advances in Parasitology
#207
of 337 outputs
Outputs of similar age
#219,051
of 393,734 outputs
Outputs of similar age from Advances in Parasitology
#14
of 38 outputs
Altmetric has tracked 22,893,031 research outputs across all sources so far. This one is in the 33rd percentile – i.e., 33% of other outputs scored the same or lower than it.
So far Altmetric has tracked 337 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one is in the 36th percentile – i.e., 36% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 393,734 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 63% of its contemporaries.