↓ Skip to main content

The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes

Overview of attention for article published in Chemical Science, January 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
9 X users

Citations

dimensions_citation
82 Dimensions

Readers on

mendeley
88 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes
Published in
Chemical Science, January 2018
DOI 10.1039/c7sc05421a
Pubmed ID
Authors

Thomas F. Whale, Mark A. Holden, Theodore W. Wilson, Daniel O'Sullivan, Benjamin J. Murray

Abstract

Heterogeneous nucleation of ice from aqueous solutions is an important yet poorly understood process in multiple fields, not least the atmospheric sciences where it impacts the formation and properties of clouds. In the atmosphere ice-nucleating particles are usually, if not always, mixed with soluble material. However, the impact of this soluble material on ice nucleation is poorly understood. In the atmospheric community the current paradigm for freezing under mixed phase cloud conditions is that dilute solutions will not influence heterogeneous freezing. By testing combinations of nucleators and solute molecules we have demonstrated that 0.015 M solutions (predicted melting point depression <0.1 °C) of several ammonium salts can cause suspended particles of feldspars and quartz to nucleate ice up to around 3 °C warmer than they do in pure water. In contrast, dilute solutions of certain alkali metal halides can dramatically depress freezing points for the same nucleators. At 0.015 M, solutes can enhance or deactivate the ice-nucleating ability of a microcline feldspar across a range of more than 10 °C, which corresponds to a change in active site density of more than a factor of 105. This concentration was chosen for a survey across multiple solutes-nucleant combinations since it had a minimal colligative impact on freezing and is relevant for activating cloud droplets. Other nucleators, for instance a silica gel, are unaffected by these 'solute effects', to within experimental uncertainty. This split in response to the presence of solutes indicates that different mechanisms of ice nucleation occur on the different nucleators or that surface modification of relevance to ice nucleation proceeds in different ways for different nucleators. These solute effects on immersion mode ice nucleation may be of importance in the atmosphere as sea salt and ammonium sulphate are common cloud condensation nuclei (CCN) for cloud droplets and are internally mixed with ice-nucleating particles in mixed-phase clouds. In addition, we propose a pathway dependence where activation of CCN at low temperatures might lead to enhanced ice formation relative to pathways where CCN activation occurs at higher temperatures prior to cooling to nucleation temperature.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 88 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 88 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 22%
Student > Bachelor 11 13%
Researcher 11 13%
Student > Master 6 7%
Student > Doctoral Student 5 6%
Other 12 14%
Unknown 24 27%
Readers by discipline Count As %
Chemistry 26 30%
Environmental Science 12 14%
Earth and Planetary Sciences 7 8%
Engineering 7 8%
Physics and Astronomy 3 3%
Other 6 7%
Unknown 27 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 April 2018.
All research outputs
#6,158,360
of 25,084,886 outputs
Outputs from Chemical Science
#3,462
of 9,199 outputs
Outputs of similar age
#113,022
of 454,757 outputs
Outputs of similar age from Chemical Science
#239
of 730 outputs
Altmetric has tracked 25,084,886 research outputs across all sources so far. Compared to these this one has done well and is in the 75th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 9,199 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.8. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 454,757 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 730 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.