↓ Skip to main content

On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, June 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material
Published in
Frontiers in Bioengineering and Biotechnology, June 2015
DOI 10.3389/fbioe.2015.00069
Pubmed ID
Authors

Narjes Momeni Shahraki, Ali Fatemi, Vijay K. Goel, Anand Agarwal

Abstract

Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 22%
Student > Master 13 17%
Student > Bachelor 11 14%
Student > Doctoral Student 8 10%
Other 4 5%
Other 9 12%
Unknown 16 21%
Readers by discipline Count As %
Engineering 46 59%
Biochemistry, Genetics and Molecular Biology 2 3%
Agricultural and Biological Sciences 2 3%
Materials Science 2 3%
Psychology 1 1%
Other 6 8%
Unknown 19 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2015.
All research outputs
#18,409,030
of 22,803,211 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#3,389
of 6,524 outputs
Outputs of similar age
#192,827
of 267,093 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#32
of 52 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,524 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,093 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.