↓ Skip to main content

Biochemical and Structural Characterization of Enolase from Chloroflexus aurantiacus: Evidence for a Thermophilic Origin

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, June 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biochemical and Structural Characterization of Enolase from Chloroflexus aurantiacus: Evidence for a Thermophilic Origin
Published in
Frontiers in Bioengineering and Biotechnology, June 2015
DOI 10.3389/fbioe.2015.00074
Pubmed ID
Authors

Oleg A. Zadvornyy, Eric S. Boyd, Matthew C. Posewitz, Nikolay A. Zorin, John W. Peters

Abstract

Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate during both glycolysis and gluconeogenesis, and is required by all three domains of life. Here, we report the purification and biochemical and structural characterization of enolase from Chloroflexus aurantiacus, a thermophilic anoxygenic phototroph affiliated with the green non-sulfur bacteria. The protein was purified as a homodimer with a subunit molecular weight of 46 kDa. The temperature optimum for enolase catalysis was 80°C, close to the measured thermal stability of the protein which was determined to be 75°C, while the pH optimum for enzyme activity was 6.5. The specific activities of purified enolase determined at 25 and 80°C were 147 and 300 U mg(-1) of protein, respectively. K m values for the 2-phosphoglycerate/phosphoenolpyruvate reaction determined at 25 and 80°C were 0.16 and 0.03 mM, respectively. The K m values for Mg(2+) binding at these temperatures were 2.5 and 1.9 mM, respectively. When compared to enolase from mesophiles, the biochemical and structural properties of enolase from C. aurantiacus are consistent with this being thermally adapted. These data are consistent with the results of our phylogenetic analysis of enolase, which reveal that enolase has a thermophilic origin.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 7 22%
Student > Ph. D. Student 7 22%
Student > Master 4 13%
Researcher 4 13%
Professor 1 3%
Other 3 9%
Unknown 6 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 44%
Agricultural and Biological Sciences 6 19%
Computer Science 2 6%
Immunology and Microbiology 1 3%
Earth and Planetary Sciences 1 3%
Other 2 6%
Unknown 6 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 June 2015.
All research outputs
#17,756,606
of 22,803,211 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#2,886
of 6,524 outputs
Outputs of similar age
#180,386
of 267,541 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#31
of 52 outputs
Altmetric has tracked 22,803,211 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,524 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,541 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 52 others from the same source and published within six weeks on either side of this one. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.