↓ Skip to main content

PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli

Overview of attention for article published in Frontiers in Bioengineering and Biotechnology, February 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
PCR Primer Design for 16S rRNAs for Experimental Horizontal Gene Transfer Test in Escherichia coli
Published in
Frontiers in Bioengineering and Biotechnology, February 2017
DOI 10.3389/fbioe.2017.00014
Pubmed ID
Authors

Kentaro Miyazaki, Mitsuharu Sato, Miyuki Tsukuda

Abstract

We recently demonstrated that the Escherichia coli ribosome is robust enough to accommodate foreign 16S rRNAs from diverse gamma- and betaproteobacteria bacteria (Kitahara et al., 2012). Therein, we used the common universal primers Bac8f and UN1541r to obtain a nearly full-length gene. However, we noticed that these primers overlap variable sites at 19[A/C] and 1527[U/C] in Bac8f and UN1541r, respectively, and thus, the amplicon could contain mutations. This is problematic, particularly for the former site, because the 19th nucleotide pairs with the 916th nucleotide, which is a part of the "central pseudoknot" and is critical for function. Therefore, we mutationally investigated the role of the base pair using several 16S rRNAs from gamma- and betaproteobacteria. We found that both the native base pairs (gammaproteobacterial 19A-916U and betaproteobacterial 19C-916G) and the non-native 19A-916G pair retained function, whereas the non-native 19C-916U was defective 16S rRNAs. We next designed a new primer set, Bac1f and UN1542r, so that they do not overlap the potential mismatch sites. 16S rRNA amplicons obtained from the environmental metagenome using the new primer set were dominated by proteobacterial species (~85%). Subsequent functional screening identified various 16S rRNAs from proteobacteria, all of which contained native 19A-916U or 19C-916G base pairs. The primers developed in this study are thus advantageous for functional characterization of foreign 16S rRNA in E. coli with no artifacts.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 20%
Student > Master 7 11%
Researcher 4 7%
Student > Ph. D. Student 4 7%
Student > Doctoral Student 4 7%
Other 9 15%
Unknown 21 34%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 23%
Agricultural and Biological Sciences 13 21%
Immunology and Microbiology 4 7%
Environmental Science 3 5%
Veterinary Science and Veterinary Medicine 1 2%
Other 5 8%
Unknown 21 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2022.
All research outputs
#19,217,501
of 24,469,913 outputs
Outputs from Frontiers in Bioengineering and Biotechnology
#3,263
of 7,875 outputs
Outputs of similar age
#230,688
of 315,231 outputs
Outputs of similar age from Frontiers in Bioengineering and Biotechnology
#13
of 26 outputs
Altmetric has tracked 24,469,913 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,875 research outputs from this source. They receive a mean Attention Score of 3.6. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 315,231 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.