↓ Skip to main content

Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli

Overview of attention for article published in Frontiers in Cell and Developmental Biology, October 2016
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extracellular Microvesicle Production by Human Eosinophils Activated by “Inflammatory” Stimuli
Published in
Frontiers in Cell and Developmental Biology, October 2016
DOI 10.3389/fcell.2016.00117
Pubmed ID
Authors

Praveen Akuthota, Lívia A. S. Carmo, Kennedy Bonjour, Ryann O. Murphy, Thiago P. Silva, Juliana P. Gamalier, Kelsey L. Capron, John Tigges, Vasilis Toxavidis, Virginia Camacho, Ionita Ghiran, Shigeharu Ueki, Peter F. Weller, Rossana C. N. Melo

Abstract

A key function of human eosinophils is to secrete cytokines, chemokines and cationic proteins, trafficking, and releasing these mediators for roles in inflammation and other immune responses. Eosinophil activation leads to secretion of pre-synthesized granule-stored mediators through different mechanisms, but the ability of eosinophils to secrete extracellular vesicles (EVs), very small vesicles with preserved membrane topology, is still poorly understood. In the present work, we sought to identify and characterize EVs released from human eosinophils during different conditions: after a culturing period or after isolation and stimulation with inflammatory stimuli, which are known to induce eosinophil activation and secretion: CCL11 (eotaxin-1) and tumor necrosis factor alpha (TNF-α). EV production was investigated by nanoscale flow cytometry, conventional transmission electron microscopy (TEM) and pre-embedding immunonanogold EM. The tetraspanins CD63 and CD9 were used as EV biomarkers for both flow cytometry and ultrastructural immunolabeling. Nanoscale flow cytometry showed that human eosinophils produce EVs in culture and that a population of EVs expressed detectable CD9, while CD63 was not consistently detected. When eosinophils were stimulated immediately after isolation and analyzed by TEM, EVs were clearly identified as microvesicles (MVs) outwardly budding off the plasma membrane. Both CCL11 and TNF-α induced significant increases of MVs compared to unstimulated cells. TNF-α induced amplified release of MVs more than CCL11. Eosinophil MV diameters varied from 20 to 1000 nm. Immunonanogold EM revealed clear immunolabeling for CD63 and CD9 on eosinophil MVs, although not all MVs were labeled. Altogether, we identified, for the first time, that human eosinophils secrete MVs and that this production increases in response to inflammatory stimuli. This is important to understand the complex secretory activities of eosinophils underlying immune responses. The contribution of the eosinophil-derived MVs to the regulation of immune responses awaits further investigation.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 22%
Student > Doctoral Student 3 9%
Student > Master 3 9%
Researcher 3 9%
Lecturer 2 6%
Other 4 13%
Unknown 10 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 8 25%
Agricultural and Biological Sciences 5 16%
Medicine and Dentistry 4 13%
Immunology and Microbiology 2 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 3%
Other 2 6%
Unknown 10 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 October 2016.
All research outputs
#18,478,448
of 22,896,955 outputs
Outputs from Frontiers in Cell and Developmental Biology
#4,956
of 9,074 outputs
Outputs of similar age
#237,363
of 314,207 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#25
of 42 outputs
Altmetric has tracked 22,896,955 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,074 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 314,207 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one is in the 2nd percentile – i.e., 2% of its contemporaries scored the same or lower than it.