↓ Skip to main content

Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources

Overview of attention for article published in Frontiers in Cell and Developmental Biology, July 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources
Published in
Frontiers in Cell and Developmental Biology, July 2017
DOI 10.3389/fcell.2017.00064
Pubmed ID
Authors

Miles Priestman, Philipp Thomas, Brian D. Robertson, Vahid Shahrezaei

Abstract

The decision to divide is the most important one that any cell must make. Recent single cell studies suggest that most bacteria follow an "adder" model of cell size control, incorporating a fixed amount of cell wall material before dividing. Mycobacteria, including the causative agent of tuberculosis Mycobacterium tuberculosis, are known to divide asymmetrically resulting in heterogeneity in growth rate, doubling time, and other growth characteristics in daughter cells. The interplay between asymmetric cell division and adder size control has not been extensively investigated. Moreover, the impact of changes in the environment on growth rate and cell size control have not been addressed for mycobacteria. Here, we utilize time-lapse microscopy coupled with microfluidics to track live Mycobacterium smegmatis cells as they grow and divide over multiple generations, under a variety of growth conditions. We demonstrate that, under optimal conditions, M. smegmatis cells robustly follow the adder principle, with constant added length per generation independent of birth size, growth rate, and inherited pole age. However, the nature of the carbon source induces deviations from the adder model in a manner that is dependent on pole age. Understanding how mycobacteria maintain cell size homoeostasis may provide crucial targets for the development of drugs for the treatment of tuberculosis, which remains a leading cause of global mortality.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 17%
Student > Master 13 17%
Researcher 11 15%
Student > Bachelor 7 9%
Student > Doctoral Student 4 5%
Other 9 12%
Unknown 18 24%
Readers by discipline Count As %
Agricultural and Biological Sciences 18 24%
Biochemistry, Genetics and Molecular Biology 17 23%
Immunology and Microbiology 6 8%
Physics and Astronomy 3 4%
Medicine and Dentistry 3 4%
Other 8 11%
Unknown 20 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2017.
All research outputs
#17,905,157
of 22,988,380 outputs
Outputs from Frontiers in Cell and Developmental Biology
#4,333
of 9,104 outputs
Outputs of similar age
#224,310
of 312,615 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#12
of 17 outputs
Altmetric has tracked 22,988,380 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,104 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 312,615 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 17 others from the same source and published within six weeks on either side of this one. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.