↓ Skip to main content

A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication

Overview of attention for article published in Frontiers in Cell and Developmental Biology, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication
Published in
Frontiers in Cell and Developmental Biology, February 2018
DOI 10.3389/fcell.2018.00002
Pubmed ID
Authors

Dacheng Liang

Abstract

The reactive oxygen species, generally labeled toxic due to high reactivity without target specificity, are gradually uncovered as signaling molecules involved in a myriad of biological processes. But one important feature of ROS roles in macromolecule movement has not caught attention until recent studies with technique advance and design elegance have shed lights on ROS signaling for intercellular and interorganelle communication. This review begins with the discussions of genetic and chemical studies on the regulation of symplastic dye movement through intercellular tunnels in plants (plasmodesmata), and focuses on the ROS regulatory mechanisms concerning macromolecule movement including small RNA-mediated gene silencing movement and protein shuttling between cells. Given the premise that intercellular tunnels (bridges) in mammalian cells are the key physical structures to sustain intercellular communication, movement of macromolecules and signals is efficiently facilitated by ROS-induced membrane protrusions formation, which is analogously applied to the interorganelle communication in plant cells. Although ROS regulatory differences between plant and mammalian cells exist, the basis for ROS-triggered conduit formation underlies a unifying conservative theme in multicellular organisms. These mechanisms may represent the evolutionary advances that have enabled multicellularity to gain the ability to generate and utilize ROS to govern material exchanges between individual cells in oxygenated environment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 31%
Student > Bachelor 6 15%
Student > Doctoral Student 4 10%
Researcher 3 8%
Student > Master 3 8%
Other 5 13%
Unknown 6 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 14 36%
Biochemistry, Genetics and Molecular Biology 8 21%
Medicine and Dentistry 2 5%
Chemical Engineering 1 3%
Philosophy 1 3%
Other 2 5%
Unknown 11 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2018.
All research outputs
#17,929,042
of 23,020,670 outputs
Outputs from Frontiers in Cell and Developmental Biology
#4,350
of 9,120 outputs
Outputs of similar age
#307,877
of 437,329 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#21
of 31 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,120 research outputs from this source. They receive a mean Attention Score of 3.4. This one is in the 45th percentile – i.e., 45% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,329 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.