↓ Skip to main content

Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish

Overview of attention for article published in Frontiers in Cell and Developmental Biology, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Versatile Genome Engineering Techniques Advance Human Ocular Disease Researches in Zebrafish
Published in
Frontiers in Cell and Developmental Biology, July 2018
DOI 10.3389/fcell.2018.00075
Pubmed ID
Authors

Si-Si Zheng, Ru-Yi Han, Lue Xiang, You-Yuan Zhuang, Zi-Bing Jin

Abstract

Over recent decades, zebrafish has been established as a sophisticated vertebrate model for studying human ocular diseases due to its high fecundity, short generation time and genetic tractability. With the invention of morpholino (MO) technology, it became possible to study the genetic basis and relevant genes of ocular diseases in vivo. Many genes have been shown to be related to ocular diseases. However, the issue of specificity is the major concern in defining gene functions with MO technology. The emergence of the first- and second-generation genetic modification tools zinc-finger nucleases (ZFNs) and TAL effector nucleases (TALENs), respectively, eliminated the potential phenotypic risk induced by MOs. Nevertheless, the efficiency of these nucleases remained relatively low until the third technique, the clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, was discovered. This review highlights the application of multiple genome engineering techniques, especially the CRISPR/Cas9 system, in the study of human ocular diseases in zebrafish.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 27%
Student > Doctoral Student 3 14%
Professor 2 9%
Student > Ph. D. Student 2 9%
Student > Master 2 9%
Other 2 9%
Unknown 5 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 27%
Agricultural and Biological Sciences 4 18%
Linguistics 1 5%
Pharmacology, Toxicology and Pharmaceutical Science 1 5%
Medicine and Dentistry 1 5%
Other 4 18%
Unknown 5 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 July 2018.
All research outputs
#15,012,809
of 23,094,276 outputs
Outputs from Frontiers in Cell and Developmental Biology
#3,263
of 9,162 outputs
Outputs of similar age
#197,480
of 326,948 outputs
Outputs of similar age from Frontiers in Cell and Developmental Biology
#20
of 37 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 9,162 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 56% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,948 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 37 others from the same source and published within six weeks on either side of this one. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.