↓ Skip to main content

Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis

Overview of attention for article published in Frontiers in Chemistry, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Readers on

mendeley
64 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Remaining challenges in cellular flavin cofactor homeostasis and flavoprotein biogenesis
Published in
Frontiers in Chemistry, April 2015
DOI 10.3389/fchem.2015.00030
Pubmed ID
Authors

Teresa A. Giancaspero, Matilde Colella, Carmen Brizio, Graziana Difonzo, Giuseppina M. Fiorino, Piero Leone, Roderich Brandsch, Francesco Bonomi, Stefania Iametti, Maria Barile

Abstract

The primary role of the water-soluble vitamin B2 (riboflavin) in cell biology is connected with its conversion into FMN and FAD, the cofactors of a large number of dehydrogenases, oxidases and reductases involved in a broad spectrum of biological activities, among which energetic metabolism and chromatin remodeling. Subcellular localisation of FAD synthase (EC 2.7.7.2, FADS), the second enzyme in the FAD forming pathway, is addressed here in HepG2 cells by confocal microscopy, in the frame of its relationships with kinetics of FAD synthesis and delivery to client apo-flavoproteins. FAD synthesis catalyzed by recombinant isoform 2 of FADS occurs via an ordered bi-bi mechanism in which ATP binds prior to FMN, and pyrophosphate is released before FAD. Spectrophotometric continuous assays of the reconstitution rate of apo-D-aminoacid oxidase with its cofactor, allowed us to propose that besides its FAD synthesizing activity, hFADS is able to operate as a FAD "chaperone." The physical interaction between FAD forming enzyme and its clients was further confirmed by dot blot and immunoprecipitation experiments carried out testing as a client either a nuclear lysine-specific demethylase 1 (LSD1) or a mitochondrial dimethylglycine dehydrogenase (Me2GlyDH, EC 1.5.8.4). Both enzymes carry out similar reactions of oxidative demethylation, in which tetrahydrofolate is converted into 5,10-methylene-tetrahydrofolate. A direct transfer of the cofactor from hFADS2 to apo-dimethyl glycine dehydrogenase was also demonstrated. Thus, FAD synthesis and delivery to these enzymes are crucial processes for bioenergetics and nutri-epigenetics of liver cells.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 64 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 2%
Poland 1 2%
Italy 1 2%
Unknown 61 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 14%
Student > Postgraduate 6 9%
Student > Master 5 8%
Student > Bachelor 5 8%
Student > Doctoral Student 4 6%
Other 14 22%
Unknown 21 33%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 23%
Agricultural and Biological Sciences 8 13%
Chemistry 6 9%
Medicine and Dentistry 4 6%
Immunology and Microbiology 3 5%
Other 6 9%
Unknown 22 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 May 2015.
All research outputs
#18,407,102
of 22,800,560 outputs
Outputs from Frontiers in Chemistry
#2,203
of 5,897 outputs
Outputs of similar age
#193,580
of 265,536 outputs
Outputs of similar age from Frontiers in Chemistry
#10
of 23 outputs
Altmetric has tracked 22,800,560 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,897 research outputs from this source. They receive a mean Attention Score of 2.0. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,536 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.