↓ Skip to main content

From Stock Bottle to Vaccine: Elucidating the Particle Size Distributions of Aluminum Adjuvants Using Dynamic Light Scattering

Overview of attention for article published in Frontiers in Chemistry, January 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (91st percentile)
  • Good Attention Score compared to outputs of the same age and source (76th percentile)

Mentioned by

twitter
37 X users
facebook
4 Facebook pages

Citations

dimensions_citation
30 Dimensions

Readers on

mendeley
50 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From Stock Bottle to Vaccine: Elucidating the Particle Size Distributions of Aluminum Adjuvants Using Dynamic Light Scattering
Published in
Frontiers in Chemistry, January 2017
DOI 10.3389/fchem.2016.00048
Pubmed ID
Authors

Emma Shardlow, Matthew Mold, Christopher Exley

Abstract

The physicochemical properties of aluminum salts are key determinants of their resultant adjuvanticity in vivo when administered as part of a vaccine. While there are links between particle size and the efficacy of the immune response, the limited literature directly characterizing the PSD of aluminum adjuvants has stymied the elucidation of such a relationship for these materials. Hence, this comparative study was undertaken to monitor the PSD of aluminum adjuvants throughout the process of vaccine formulation using DLS. A significant proportion of the stock suspensions was highly agglomerated (>9 μm) and Alhydrogel® exhibited the smallest median size (2677 ± 120 nm) in comparison to Adju-Phos® or Imject alum® (7152 ± 308 and 7294 ± 146 nm respectively) despite its large polydispersity index (PDI). Dilution of these materials induced some degree of disaggregation within all samples with Adju-Phos® being the most significantly affected. The presence of BSA caused the median size of Alhydrogel® to increase but these trends were not evident when model vaccines were formulated with either Adju-Phos® or Imject alum®. Nevertheless, Alhydrogel® and Adju-Phos® exhibited comparable median sizes in the presence of this protein (4194 ± 466 and 4850 ± 501 nm respectively) with Imject alum® being considerably smaller (2155 ± 485 nm). These results suggest that the PSD of aluminum adjuvants is greatly influenced by dilution and the degree of protein adsorption experienced within the vaccine itself. The size of the resultant antigen-adjuvant complex may be important for its immunological recognition and subsequent clearance from the injection site.

X Demographics

X Demographics

The data shown below were collected from the profiles of 37 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 50 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 50 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 13 26%
Researcher 8 16%
Other 7 14%
Student > Bachelor 3 6%
Student > Master 3 6%
Other 4 8%
Unknown 12 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 14%
Agricultural and Biological Sciences 6 12%
Chemistry 4 8%
Chemical Engineering 3 6%
Pharmacology, Toxicology and Pharmaceutical Science 3 6%
Other 12 24%
Unknown 15 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 22. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2024.
All research outputs
#1,763,629
of 25,761,363 outputs
Outputs from Frontiers in Chemistry
#75
of 6,832 outputs
Outputs of similar age
#35,119
of 425,119 outputs
Outputs of similar age from Frontiers in Chemistry
#3
of 13 outputs
Altmetric has tracked 25,761,363 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 93rd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,832 research outputs from this source. They receive a mean Attention Score of 2.3. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 425,119 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 91% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 76% of its contemporaries.