↓ Skip to main content

Synergistic Catalysis by “Polymeric Microzymes and Inorganic Nanozymes”: The 1+1>2 Effect for Intramolecular Cyclization of Peptides

Overview of attention for article published in Frontiers in Chemistry, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synergistic Catalysis by “Polymeric Microzymes and Inorganic Nanozymes”: The 1+1>2 Effect for Intramolecular Cyclization of Peptides
Published in
Frontiers in Chemistry, September 2017
DOI 10.3389/fchem.2017.00060
Pubmed ID
Authors

Zhiliang Chen, Börje Sellergren, Xiantao Shen

Abstract

In this work, we developed an efficient "molecularly imprinted polymer microzymes and inorganic magnetic nanozymes" synergistic catalysis strategy for the formation of disulfide bonds in peptides. The polymeric microzymes showed excellent selectivity toward the template peptide as well as the main reactant (linear peptide), and the Fe3O4 magnetic nanoparticle (MNP) nanozymes inhibited the intermolecular reaction during the formation of disulfide bonds in peptides. As a result, the integration of the two different artificial enzymes in one process facilitates the intramolecular cyclization in high product yields (59.3%) with excellent selectivity. Mechanism study indicates the synergistic effect was occurred by using a "reversed solid phase synthesis" strategy with an enhanced shift of reaction balance to product generation. We believe the synergistic catalysis by "polymeric microzymes and inorganic nanozymes" presented in the present work may open new opportunities in creation of multifunctional enzyme mimics for sensing, imaging, and drug delivery.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Professor 1 9%
Other 1 9%
Student > Master 1 9%
Unknown 8 73%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 1 9%
Chemistry 1 9%
Medicine and Dentistry 1 9%
Unknown 8 73%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2017.
All research outputs
#20,448,386
of 23,003,906 outputs
Outputs from Frontiers in Chemistry
#2,935
of 6,008 outputs
Outputs of similar age
#279,687
of 320,414 outputs
Outputs of similar age from Frontiers in Chemistry
#24
of 38 outputs
Altmetric has tracked 23,003,906 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,008 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 320,414 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.