↓ Skip to main content

N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

Overview of attention for article published in Frontiers in Chemistry, April 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
28 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries
Published in
Frontiers in Chemistry, April 2018
DOI 10.3389/fchem.2018.00078
Pubmed ID
Authors

Jiawen Xiong, Qichang Pan, Fenghua Zheng, Xunhui Xiong, Chenghao Yang, Dongli Hu, Chunlai Huang

Abstract

Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g-1 after 150 cycles at 0.2 A g-1, and a high capacity of 531.2 mA h g-1 can be observed even after 5,000 cycles at 10.0 A g-1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g-1 can be obtained at 5.0 A g-1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 28 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 28 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 25%
Student > Master 5 18%
Student > Doctoral Student 3 11%
Other 2 7%
Researcher 2 7%
Other 2 7%
Unknown 7 25%
Readers by discipline Count As %
Chemistry 10 36%
Chemical Engineering 2 7%
Engineering 2 7%
Physics and Astronomy 2 7%
Environmental Science 1 4%
Other 2 7%
Unknown 9 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 April 2018.
All research outputs
#20,483,282
of 23,045,021 outputs
Outputs from Frontiers in Chemistry
#2,936
of 6,018 outputs
Outputs of similar age
#287,649
of 326,650 outputs
Outputs of similar age from Frontiers in Chemistry
#65
of 151 outputs
Altmetric has tracked 23,045,021 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,018 research outputs from this source. They receive a mean Attention Score of 2.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,650 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 151 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.