↓ Skip to main content

Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?

Overview of attention for article published in Frontiers in Chemistry, April 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age and source (55th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
24 Dimensions

Readers on

mendeley
40 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pancreatic Aquaporin-7: A Novel Target for Anti-diabetic Drugs?
Published in
Frontiers in Chemistry, April 2018
DOI 10.3389/fchem.2018.00099
Pubmed ID
Authors

Leire Méndez-Giménez, Silvia Ezquerro, Inês V. da Silva, Graça Soveral, Gema Frühbeck, Amaia Rodríguez

Abstract

Aquaporins comprise a family of 13 members of water channels (AQP0-12) that facilitate a rapid transport of water across cell membranes. In some cases, these pores are also permeated by small solutes, particularly glycerol, urea or nitric oxide, among other solutes. Several aquaporins have been identified in the pancreas, an exocrine and endocrine organ that plays an essential role in the onset of insulin resistance and type 2 diabetes. The exocrine pancreas, which accounts for 90% of the total pancreas, secretes daily large volumes of a near-isotonic fluid containing digestive enzymes into the duodenum. AQP1, AQP5, and AQP8 contribute to fluid secretion especially from ductal cells, whereas AQP12 allows the proper maturation and exocytosis of secretory granules in acinar cells of the exocrine pancreas. The endocrine pancreas (10% of the total pancreatic cells) is composed by the islets of Langerhans, which are distributed in α, β, δ, ε, and pancreatic polypeptide (PP) cells that secrete glucagon, insulin, somatostatin, ghrelin and PP, respectively. AQP7, an aquaglyceroporin permeated by water and glycerol, is expressed in pancreatic β-cells and murine studies have confirmed its participation in insulin secretion, triacylglycerol synthesis and proliferation of these endocrine cells. In this regard, transgenic AQP7-knockout mice develop adult-onset obesity, hyperinsulinemia, increased intracellular triacylglycerol content and reduced β-cell mass in Langerhans islets. Moreover, we have recently reported that AQP7 upregulation in β-cells after bariatric surgery, an effective weight loss surgical procedure, contributes, in part, to the improvement of pancreatic steatosis and insulin secretion through the increase of intracytoplasmic glycerol in obese rats. Human studies remain scarce and controversial, with some rare cases of loss-of function mutations of the AQP7 gene being associated with the onset of type 2 diabetes. The present Review is focused on the role of aquaporins in the physiology and pathophysiology of the pancreas, highlighting the role of pancreatic AQP7 as a novel player in the control of β-cell function and a potential anti-diabetic-drug.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 40 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 40 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 9 23%
Student > Bachelor 6 15%
Student > Postgraduate 3 8%
Student > Ph. D. Student 3 8%
Student > Doctoral Student 2 5%
Other 6 15%
Unknown 11 28%
Readers by discipline Count As %
Medicine and Dentistry 10 25%
Biochemistry, Genetics and Molecular Biology 8 20%
Agricultural and Biological Sciences 5 13%
Nursing and Health Professions 2 5%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 1 3%
Unknown 12 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 April 2018.
All research outputs
#18,601,965
of 23,041,514 outputs
Outputs from Frontiers in Chemistry
#2,228
of 6,016 outputs
Outputs of similar age
#256,074
of 329,678 outputs
Outputs of similar age from Frontiers in Chemistry
#58
of 136 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,016 research outputs from this source. They receive a mean Attention Score of 2.0. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,678 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 11th percentile – i.e., 11% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 136 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 55% of its contemporaries.