↓ Skip to main content

Capacity Increase Investigation of Cu2Se Electrode by Using Electrochemical Impedance Spectroscopy

Overview of attention for article published in Frontiers in Chemistry, June 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
12 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Capacity Increase Investigation of Cu2Se Electrode by Using Electrochemical Impedance Spectroscopy
Published in
Frontiers in Chemistry, June 2018
DOI 10.3389/fchem.2018.00221
Pubmed ID
Authors

Xiuwan Li, Zhixin Zhang, Chaoqun Liu, Zhiyang Lin

Abstract

Cu2Se nanoflake arrays supported by Cu foams are synthesized by a facile hydrothermal method in this study. The Cu2Se materials are directly used as an anode for lithium ion batteries, which show superior cycle performance with significant capacity increase. Combining with previous reports and scanning electron microscope images after cycling, the capacity increase caused by the reversible growth of a polymeric film is discussed. Electrochemical impedance spectroscopy is used to test the reversible growth of the polymeric film. By analyzing the three-dimensional Nyquist plots at different potentials during the discharge/charge process, detailed electrochemical reaction information can be obtained, which can further verify the reversible formation of a polymeric film at low potential.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 18%
Student > Bachelor 2 18%
Student > Ph. D. Student 2 18%
Student > Master 1 9%
Researcher 1 9%
Other 1 9%
Unknown 2 18%
Readers by discipline Count As %
Chemical Engineering 2 18%
Materials Science 2 18%
Chemistry 2 18%
Engineering 1 9%
Unknown 4 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 June 2018.
All research outputs
#18,639,173
of 23,090,520 outputs
Outputs from Frontiers in Chemistry
#2,237
of 6,038 outputs
Outputs of similar age
#253,548
of 328,349 outputs
Outputs of similar age from Frontiers in Chemistry
#65
of 168 outputs
Altmetric has tracked 23,090,520 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,038 research outputs from this source. They receive a mean Attention Score of 2.1. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,349 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 12th percentile – i.e., 12% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 168 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.