↓ Skip to main content

Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally?

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, January 2012
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
54 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally?
Published in
Frontiers in Cellular and Infection Microbiology, January 2012
DOI 10.3389/fcimb.2012.00124
Pubmed ID
Authors

Amandeep Gargi, Michael Reno, Steven R. Blanke

Abstract

The cytolethal distending toxins (CDTs) comprise a family of intracellular-acting bacterial protein toxins whose actions upon eukaryotic cells result in several consequences, the most characteristic of which is the induction of G(2)/M cell cycle arrest. Most CDTs are hetero-tripartite assemblies of CdtA, CdtB, and CdtC, with CdtB required for CDT-mediated cell cycle arrest. Several lines of evidence indicate that CdtA and CdtC are required for the optimal intracellular activity of CdtB, although the exact functional roles of CdtA and CdtC remain poorly understood. The genes encoding the CDTs have been identified in a diverse array of Gram-negative pathogenic bacteria. More recently, the genes encoding several CdtB subunits have been associated with alternatively linked subunits resembling the B-subunits of pertussis toxin. Although the CDTs are generally considered to all function as bacterial genotoxins, the extent to which individual members of the CDTs employ similar mechanisms of cell surface binding, uptake, and trafficking within sensitive cells is poorly understood. Recently, data have begun to emerge suggesting differences in the molecular basis by which individual CDTs interact with and enter host cells, suggesting the possibility that CDTs possess properties reflecting the specific niches idiosyncratic to those CDT bacterial pathogens that produce them. The extent to which functional differences between individual CDTs reflect the specific requirements for intoxicating cells and tissues within the diverse range of host microenvironments colonized by CDT-producing pathogenic bacteria remains to be experimentally explored.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 54 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 4%
Unknown 52 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 12 22%
Student > Ph. D. Student 12 22%
Researcher 8 15%
Student > Master 7 13%
Professor 4 7%
Other 5 9%
Unknown 6 11%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 41%
Biochemistry, Genetics and Molecular Biology 14 26%
Immunology and Microbiology 7 13%
Computer Science 1 2%
Veterinary Science and Veterinary Medicine 1 2%
Other 0 0%
Unknown 9 17%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 October 2015.
All research outputs
#17,667,907
of 22,681,577 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#4,010
of 6,291 outputs
Outputs of similar age
#191,327
of 244,101 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#69
of 109 outputs
Altmetric has tracked 22,681,577 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 6,291 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 244,101 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 19th percentile – i.e., 19% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 109 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.