↓ Skip to main content

Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

policy
1 policy source
twitter
2 X users

Readers on

mendeley
53 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines
Published in
Frontiers in Cellular and Infection Microbiology, February 2016
DOI 10.3389/fcimb.2016.00020
Pubmed ID
Authors

Pilar Alberdi, Karen L. Mansfield, Raúl Manzano-Román, Charlotte Cook, Nieves Ayllón, Margarita Villar, Nicholas Johnson, Anthony R. Fooks, José de la Fuente

Abstract

Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick cell lines were derived from embryonated eggs and may contain various cell populations with different morphology and behavior that could affect transcriptional response to infection. These results suggested tissue-specific signatures in I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell line response to A. phagocytophilum infection that support their use as models for the study of tick-pathogen interactions.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 53 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 53 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 26%
Student > Master 8 15%
Researcher 7 13%
Student > Doctoral Student 4 8%
Student > Bachelor 2 4%
Other 8 15%
Unknown 10 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 16 30%
Agricultural and Biological Sciences 11 21%
Veterinary Science and Veterinary Medicine 6 11%
Immunology and Microbiology 4 8%
Medicine and Dentistry 2 4%
Other 4 8%
Unknown 10 19%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 April 2016.
All research outputs
#7,960,693
of 25,374,917 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#1,787
of 8,068 outputs
Outputs of similar age
#122,126
of 409,928 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#9
of 43 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 8,068 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 409,928 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 43 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.