↓ Skip to main content

Microbial Invasion vs. Tick Immune Regulation

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, September 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (69th percentile)
  • High Attention Score compared to outputs of the same age and source (82nd percentile)

Mentioned by

twitter
9 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
43 Dimensions

Readers on

mendeley
100 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microbial Invasion vs. Tick Immune Regulation
Published in
Frontiers in Cellular and Infection Microbiology, September 2017
DOI 10.3389/fcimb.2017.00390
Pubmed ID
Authors

Daniel E. Sonenshine, Kevin R. Macaluso

Abstract

Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 100 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 100 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 19%
Student > Ph. D. Student 13 13%
Student > Master 13 13%
Student > Bachelor 8 8%
Professor 5 5%
Other 13 13%
Unknown 29 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 22 22%
Biochemistry, Genetics and Molecular Biology 13 13%
Immunology and Microbiology 11 11%
Veterinary Science and Veterinary Medicine 7 7%
Medicine and Dentistry 3 3%
Other 11 11%
Unknown 33 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 5. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 July 2018.
All research outputs
#6,773,427
of 25,425,223 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#1,320
of 8,106 outputs
Outputs of similar age
#97,622
of 323,424 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#22
of 117 outputs
Altmetric has tracked 25,425,223 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 8,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.8. This one has done well, scoring higher than 83% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 323,424 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.
We're also able to compare this research output to 117 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 82% of its contemporaries.