↓ Skip to main content

Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells

Overview of attention for article published in Frontiers in Cellular and Infection Microbiology, November 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
10 news outlets
blogs
1 blog
twitter
8 X users

Readers on

mendeley
42 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells
Published in
Frontiers in Cellular and Infection Microbiology, November 2017
DOI 10.3389/fcimb.2017.00470
Pubmed ID
Authors

Émilie Maillé, Manon Ruffin, Damien Adam, Hatem Messaoud, Shantelle L. Lafayette, Geoffrey McKay, Dao Nguyen, Emmanuelle Brochiero

Abstract

The function of cystic fibrosis transmembrane conductance regulator (CFTR) channels is crucial in human airways. However unfortunately, chronic Pseudomonas aeruginosa infection has been shown to impair CFTR proteins in non-CF airway epithelial cells (AEC) and to alter the efficiency of new treatments with CFTR modulators designed to correct the basic CFTR default in AEC from cystic fibrosis (CF) patients carrying the F508del mutation. Our aim was first to compare the effect of laboratory strains, clinical isolates, engineered and natural mutants to determine the role of the LasR quorum sensing system in CFTR impairment, and second, to test the efficiency of a quorum sensing inhibitor to counteract the deleterious impact of P. aeruginosa both on wt-CFTR and on the rescue of F508del-CFTR by correctors. We first report that exoproducts from either the laboratory PAO1 strain or a clinical ≪Early≫ isolate (from an early stage of infection) altered CFTR expression, localization and function in AEC expressing wt-CFTR. Genetic inactivation of the quorum-sensing LasR in PAO1 (PAO1ΔlasR) or in a natural clinical mutant (≪Late≫ CF-adapted clinical isolate) abolished wt-CFTR impairment. PAO1 exoproducts also dampened F508del-CFTR rescue by VRT-325 or Vx-809 correctors in CF cells, whereas PAO1ΔlasR had no impact. Importantly, treatment of P. aeruginosa cultures with a quorum sensing inhibitor (HDMF) prevented the negative effect of P. aeruginosa exoproducts on wt-CFTR and preserved CFTR rescue by correctors in CF AEC. These findings indicate that LasR-interfering strategies could be of benefits to counteract the deleterious effect of P. aeruginosa in infected patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 8 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 42 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 42 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 19%
Researcher 8 19%
Student > Master 5 12%
Student > Ph. D. Student 4 10%
Other 3 7%
Other 5 12%
Unknown 9 21%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 21%
Agricultural and Biological Sciences 8 19%
Immunology and Microbiology 6 14%
Medicine and Dentistry 5 12%
Pharmacology, Toxicology and Pharmaceutical Science 2 5%
Other 2 5%
Unknown 10 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 76. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 October 2018.
All research outputs
#573,193
of 25,698,912 outputs
Outputs from Frontiers in Cellular and Infection Microbiology
#93
of 8,233 outputs
Outputs of similar age
#11,906
of 340,341 outputs
Outputs of similar age from Frontiers in Cellular and Infection Microbiology
#1
of 107 outputs
Altmetric has tracked 25,698,912 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 8,233 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has done particularly well, scoring higher than 98% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,341 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 107 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 99% of its contemporaries.